Pregunta
upstudy study bank question image url

Using the rational root theorem, list out all possible/candidate rational roots of \( f(x)=22 x^{2}+4 x-26 x^{3}-5 x^{5}+17 x^{4}-10 \). Express your answer as integers as fractions in simplest form. Use commas to separate.

Ask by Bartlett Long. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The possible rational roots are: -10, -5, -2, -1, -2/5, -1/5, 1/5, 2/5, 1, 2, 5, 10.

Solución

The Rational Root Theorem states that any possible rational root of the polynomial \( f(x) = -5x^{5} + 17x^{4} - 26x^{3} + 22x^{2} + 4x - 10 \) is of the form \( \frac{p}{q} \), where: - \( p \) is a divisor of the constant term (-10). - \( q \) is a divisor of the leading coefficient (-5). **Step 1: Find divisors of the constant term (-10)** \[ p = \pm1, \pm2, \pm5, \pm10 \] **Step 2: Find divisors of the leading coefficient (-5)** \[ q = \pm1, \pm5 \] **Step 3: Form all possible \( \frac{p}{q} \) combinations and simplify** \[ \text{Possible rational roots: } \pm1, \pm2, \pm5, \pm10, \pm\frac{1}{5}, \pm\frac{2}{5} \] **Final List of Candidate Rational Roots (in simplest form):** \[ -10, -5, -2, -1, -\frac{2}{5}, -\frac{1}{5}, \frac{1}{5}, \frac{2}{5}, 1, 2, 5, 10 \] **Answer:** \(-10, -5, -2, -1, -2/5, -1/5, 1/5, 2/5, 1, 2, 5, 10\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To apply the rational root theorem, we first need to consider the leading coefficient and the constant term of the polynomial. The polynomial \( f(x) = -5x^5 + 17x^4 - 26x^3 + 22x^2 + 4x - 10 \) has a leading coefficient of \(-5\) and a constant term of \(-10\). The possible rational roots are given by the factors of the constant term divided by the factors of the leading coefficient. The factors of \(-10\) are: \(\pm 1, \pm 2, \pm 5, \pm 10\). The factors of \(-5\) are: \(\pm 1, \pm 5\). Now, we take the factors of \(-10\) and divide them by the factors of \(-5\): Possible rational roots: 1. \( \frac{1}{1}, \frac{1}{-5}, \frac{2}{1}, \frac{2}{-5}, \frac{5}{1}, \frac{5}{-5}, \frac{10}{1}, \frac{10}{-5} \) 2. \( -1, -2, -5, -10, \frac{1}{5}, \frac{2}{5}, \frac{5}{5}, \frac{10}{5} \) Simplifying the fractions, we have: Possible rational roots: \( \pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{5}, \pm \frac{2}{5} \). So the complete list of possible rational roots is: **Answer**: \(-10, -5, -2, -1, \frac{-2}{5}, \frac{-1}{5}, 1, 2, 5, 10, \frac{1}{5}, \frac{2}{5}\)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad