13. \( \left(x^{2}-4 x-21\right) \div(x+3) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve \( \left(x^{2}-4 x-21\right) \div(x+3) \), let's first factor the quadratic expression. The expression \( x^2 - 4x - 21 \) factors into \( (x - 7)(x + 3) \). Now, when we divide by \( (x + 3) \), we can simplify the expression since \( x + 3 \) cancels out, giving us \( x - 7 \) for \( x \neq -3 \). This means that the solution to the division is \( x - 7 \), except at the point where \( x + 3 = 0 \) (or \( x = -3 \)), where the original expression is undefined. So you get a nice linear function with a hole! Want to try plugging in some values to see how it behaves?