Pregunta
upstudy study bank question image url

Part \( B \) Which of the following expressions can be used to lind the nith term in the patterm? A. \( 3(n-1) \) B. \( 3+5(n-1) \) C. \( 3+(n-1)+5 \) D. \( 3(n-1)+5 \)

Ask by Bryant Barker. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct expression to find the \( n \)-th term is \( 3 + 5(n-1) \).

Solución

To find the \( n \)-th term of a pattern, we need to analyze the given expressions and determine which one correctly represents the \( n \)-th term. Let's break down each option: A. \( 3(n-1) \) This expression suggests that the \( n \)-th term is a multiple of 3, but it does not account for a starting value or an increment. B. \( 3 + 5(n-1) \) This expression starts with 3 and adds increments of 5 for each term after the first. This is a common form for an arithmetic sequence. C. \( 3 + (n-1) + 5 \) This expression simplifies to \( 3 + 5 + (n-1) = 8 + (n-1) \), which does not clearly represent a consistent pattern. D. \( 3(n-1) + 5 \) This expression suggests that the \( n \)-th term starts with 5 and adds multiples of 3 for each term after the first. Now, let's analyze the expressions that are likely to represent an arithmetic sequence, which typically has the form \( a + (n-1)d \), where \( a \) is the first term and \( d \) is the common difference. From the analysis, option B \( 3 + 5(n-1) \) fits the form of an arithmetic sequence, where: - The first term \( a = 3 \) - The common difference \( d = 5 \) Thus, the correct expression to find the \( n \)-th term in the pattern is: **B. \( 3 + 5(n-1) \)**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the n-th term of a sequence, we often rely on the formula that encapsulates the pattern governing the sequence. In this case, we can observe that the first term is 3, and it appears that there's a common difference, suggesting we might have an arithmetic sequence. Formulating expressions like \(3 + 5(n-1)\) can be particularly useful when working with sequences, as it captures both the initial term and the accumulated difference. When approaching these options, keep an eye out for the structure of arithmetic sequences. The expression typically takes the form of the first term plus the common difference multiplied by \((n-1)\). Therefore, while methods may vary slightly, ensuring proper sequencing and maintaining systematic order can lead to the correct expression for the n-th term!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad