Pregunta
upstudy study bank question image url

1. Find 6 Tig ratios using the b) \( \sin \theta= \) b) \( \cos \theta= \) c) \( \tan \theta= \) e) \( \cot \theta= \) e) \( \sec \theta= \) f) \( \sin \theta= \) \( \csc \theta= \)

Ask by Huang Edwards. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the six trigonometric ratios for angle \( \theta \) in a right triangle: 1. **Sine (\( \sin \theta \))**: \( \frac{\text{Opposite}}{\text{Hypotenuse}} \) 2. **Cosine (\( \cos \theta \))**: \( \frac{\text{Adjacent}}{\text{Hypotenuse}} \) 3. **Tangent (\( \tan \theta \))**: \( \frac{\text{Opposite}}{\text{Adjacent}} \) 4. **Cotangent (\( \cot \theta \))**: \( \frac{\text{Adjacent}}{\text{Opposite}} \) 5. **Secant (\( \sec \theta \))**: \( \frac{\text{Hypotenuse}}{\text{Adjacent}} \) 6. **Cosecant (\( \csc \theta \))**: \( \frac{\text{Hypotenuse}}{\text{Opposite}} \) These ratios help determine the relationships between the sides of a right triangle relative to angle \( \theta \).

Solución

Certainly! To find the six trigonometric ratios for a given angle \( \theta \) in a right triangle, you'll need to understand the relationships between the sides of the triangle relative to \( \theta \). Here's a step-by-step guide: ### **Understanding the Right Triangle** Consider a right-angled triangle with the following components relative to angle \( \theta \): - **Opposite (O):** The side opposite to angle \( \theta \). - **Adjacent (A):** The side adjacent (next) to angle \( \theta \). - **Hypotenuse (H):** The longest side of the triangle, opposite the right angle. ### **The Six Trigonometric Ratios** 1. **Sine (\( \sin \theta \))** \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{O}{H} \] **Interpretation:** It represents the ratio of the length of the side opposite \( \theta \) to the length of the hypotenuse. 2. **Cosine (\( \cos \theta \))** \[ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{A}{H} \] **Interpretation:** It represents the ratio of the length of the side adjacent to \( \theta \) to the length of the hypotenuse. 3. **Tangent (\( \tan \theta \))** \[ \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{O}{A} \] **Interpretation:** It represents the ratio of the length of the side opposite \( \theta \) to the length of the side adjacent to \( \theta \). 4. **Cotangent (\( \cot \theta \))** \[ \cot \theta = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{A}{O} \] **Interpretation:** It is the reciprocal of the tangent ratio, representing the ratio of the length of the side adjacent to \( \theta \) to the length of the side opposite \( \theta \). 5. **Secant (\( \sec \theta \))** \[ \sec \theta = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{H}{A} \] **Interpretation:** It is the reciprocal of the cosine ratio, representing the ratio of the hypotenuse to the side adjacent to \( \theta \). 6. **Cosecant (\( \csc \theta \))** \[ \csc \theta = \frac{\text{Hypotenuse}}{\text{Opposite}} = \frac{H}{O} \] **Interpretation:** It is the reciprocal of the sine ratio, representing the ratio of the hypotenuse to the side opposite \( \theta \). ### **Summary Table** | Trigonometric Function | Ratio Definition | |------------------------|----------------------------| | \( \sin \theta \) | \( \frac{O}{H} \) | | \( \cos \theta \) | \( \frac{A}{H} \) | | \( \tan \theta \) | \( \frac{O}{A} \) | | \( \cot \theta \) | \( \frac{A}{O} \) | | \( \sec \theta \) | \( \frac{H}{A} \) | | \( \csc \theta \) | \( \frac{H}{O} \) | ### **Example** Suppose you have a right triangle where: - Opposite side (\( O \)) = 3 units - Adjacent side (\( A \)) = 4 units - Hypotenuse (\( H \)) = 5 units Using the definitions: 1. \( \sin \theta = \frac{3}{5} = 0.6 \) 2. \( \cos \theta = \frac{4}{5} = 0.8 \) 3. \( \tan \theta = \frac{3}{4} = 0.75 \) 4. \( \cot \theta = \frac{4}{3} \approx 1.333 \) 5. \( \sec \theta = \frac{5}{4} = 1.25 \) 6. \( \csc \theta = \frac{5}{3} \approx 1.667 \) These ratios are fundamental in trigonometry and are widely used in various applications, including physics, engineering, and geometry. If you have specific values or a particular triangle you'd like to work with, feel free to provide more details, and I can help you calculate the exact ratios!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the six trigonometric ratios, we can represent an angle \( \theta \) in a right triangle where: - The opposite side to \( \theta \) is \( a \) - The adjacent side to \( \theta \) is \( b \) - The hypotenuse is \( c \) Using these definitions, the trigonometric ratios are as follows: 1. \( \sin \theta = \frac{a}{c} \) - This ratio represents the length of the side opposite \( \theta \) over the hypotenuse. 2. \( \cos \theta = \frac{b}{c} \) - This ratio is the length of the adjacent side over the hypotenuse. 3. \( \tan \theta = \frac{a}{b} \) - This represents the ratio of the length of the opposite side over the adjacent side. 4. \( \cot \theta = \frac{b}{a} \) - This is the reciprocal of the tangent, representing the length of the adjacent side over the opposite side. 5. \( \sec \theta = \frac{c}{b} \) - This is the reciprocal of cosine, showing the length of the hypotenuse over the adjacent side. 6. \( \csc \theta = \frac{c}{a} \) - This is the reciprocal of sine, representing the length of the hypotenuse over the opposite side. Now let’s make these definitions even more memorable: think of a right triangle as your cheesy pizza slice! The sides are like the ingredients, and each trigonometric ratio is a recipe to create the perfect slice! 🍕 Enjoy your culinary adventures in math!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad