Pregunta
upstudy study bank question image url

Consider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity. (Note: the acceleration due to gravity is \( 9.8 \mathrm{~m} / \mathrm{s}^{2} \).) a. Find the velocity of the object for all relevant times. b. Find the position of the object for all relevant times. c. Find the time when the object reaches its highest point (What is the height?) d. Find the time when the object strikes the ground. A payload is released at an elevation of 500 m from a hot-air balloon that is rising at a rate of \( 10 \mathrm{~m} / \mathrm{s} \).

Ask by Potter Mccoy. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **a. Velocity:** \( v(t) = 10\, \text{m/s} - 9.8\, t\, \text{m/s} \) - **b. Position:** \( y(t) = 500\, \text{m} + 10\, t\, \text{m/s} - 4.9\, t^2\, \text{m} \) - **c. Highest Point:** - Time: \( t \approx 1.02\, \text{seconds} \) - Height: \( y \approx 505.10\, \text{meters} \) - **d. Time to Strike Ground:** \( t \approx 11.18\, \text{seconds} \)

Solución

Let's analyze the vertical motion of the payload released from the hot-air balloon considering the acceleration due to gravity. We'll address each part of the problem step by step. --- ### **Given:** - **Initial Elevation (\( y_0 \))**: 500 meters - **Initial Velocity (\( v_0 \))**: Since the balloon is rising at \( 10 \, \text{m/s} \), the payload is released with an initial upward velocity of \( v_0 = +10 \, \text{m/s} \). - **Acceleration due to Gravity (\( a \))**: \( -9.8 \, \text{m/s}^2 \) (negative sign indicates downward acceleration) We'll define the upward direction as positive. --- ### **a. Velocity of the Object for All Relevant Times** **Formula:** \[ v(t) = v_0 + a t \] **Calculation:** \[ v(t) = 10 \, \text{m/s} + (-9.8 \, \text{m/s}^2) \cdot t \] \[ v(t) = 10 - 9.8t \, \text{m/s} \] **Result:** \[ \boxed{v(t) = 10\, \text{m/s} - 9.8\, t\, \text{m/s}} \] --- ### **b. Position of the Object for All Relevant Times** **Formula:** \[ y(t) = y_0 + v_0 t + \frac{1}{2} a t^2 \] **Calculation:** \[ y(t) = 500\, \text{m} + (10\, \text{m/s}) \cdot t + \frac{1}{2} \cdot (-9.8\, \text{m/s}^2) \cdot t^2 \] \[ y(t) = 500 + 10t - 4.9t^2 \, \text{m} \] **Result:** \[ \boxed{y(t) = 500\, \text{m} + 10\, t\, \text{m/s} - 4.9\, t^2\, \text{m}} \] --- ### **c. Time and Height When the Object Reaches Its Highest Point** At the highest point, the vertical velocity becomes zero. **Finding Time (\( t_{\text{max}} \)) When \( v(t) = 0 \):** \[ 0 = 10 - 9.8t \] \[ 9.8t = 10 \] \[ t_{\text{max}} = \frac{10}{9.8} \approx 1.0204 \, \text{seconds} \] **Finding Height (\( y_{\text{max}} \)) at \( t_{\text{max}} \):** \[ y_{\text{max}} = 500 + 10 \cdot 1.0204 - 4.9 \cdot (1.0204)^2 \] \[ y_{\text{max}} \approx 500 + 10.204 - 4.9 \cdot 1.0412 \] \[ y_{\text{max}} \approx 500 + 10.204 - 5.1024 \] \[ y_{\text{max}} \approx 505.1016 \, \text{meters} \] **Results:** - **Time to Reach Highest Point:** \[ \boxed{t_{\text{max}} \approx 1.02\, \text{seconds}} \] - **Height at Highest Point:** \[ \boxed{y_{\text{max}} \approx 505.10\, \text{meters}} \] --- ### **d. Time When the Object Strikes the Ground** When the object strikes the ground, its position \( y(t) = 0 \). **Setting Position Equation to Zero:** \[ 0 = 500 + 10t - 4.9t^2 \] \[ 4.9t^2 - 10t - 500 = 0 \] **Solving the Quadratic Equation \( 4.9t^2 - 10t - 500 = 0 \):** Using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where: - \( a = 4.9 \) - \( b = -10 \) - \( c = -500 \) **Calculations:** \[ t = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \cdot 4.9 \cdot (-500)}}{2 \cdot 4.9} \] \[ t = \frac{10 \pm \sqrt{100 + 9800}}{9.8} \] \[ t = \frac{10 \pm \sqrt{9900}}{9.8} \] \[ \sqrt{9900} \approx 99.497 \] \[ t = \frac{10 \pm 99.497}{9.8} \] **Valid Solution (Positive Time):** \[ t = \frac{10 + 99.497}{9.8} \] \[ t \approx \frac{109.497}{9.8} \] \[ t \approx 11.184 \, \text{seconds} \] **Result:** \[ \boxed{t \approx 11.18\, \text{seconds}} \] --- ### **Summary of Results:** - **a. Velocity as a Function of Time:** \[ v(t) = 10\, \text{m/s} - 9.8\, t\, \text{m/s} \] - **b. Position as a Function of Time:** \[ y(t) = 500\, \text{m} + 10\, t\, \text{m/s} - 4.9\, t^2\, \text{m} \] - **c. Time and Height at Highest Point:** \[ t_{\text{max}} \approx 1.02\, \text{seconds} \] \[ y_{\text{max}} \approx 505.10\, \text{meters} \] - **d. Time When the Object Strikes the Ground:** \[ t \approx 11.18\, \text{seconds} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the problem, let's first break down the motion of the payload after it's released from the balloon. ### a. Velocity of the object for all relevant times: When the payload is released, its initial velocity (\(v_0\)) is equal to the upward velocity of the balloon, which is \(10 \, \text{m/s}\). The velocity of the object at any time \(t\) can be determined using the equation: \[ v(t) = v_0 - gt = 10 - 9.8t \] Here, \(g\) is the acceleration due to gravity (\(9.8 \, \text{m/s}^2\)). ### b. Position of the object for all relevant times: The position \(s(t)\) of the object (height above the ground) can be calculated using the initial height and considering the downward displacement due to gravity: \[ s(t) = s_0 + v_0 t - \frac{1}{2}gt^2 = 500 + 10t - 4.9t^2 \] Where \(s_0\) is the initial height of \(500 \, \text{m}\). ### c. Time when the object reaches its highest point (What is the height?): The object reaches its highest point when its velocity becomes zero: \[ 0 = 10 - 9.8t \implies t = \frac{10}{9.8} \approx 1.02 \, \text{s} \] At this time, we can find the height by substituting \(t\) back into the position equation: \[ s(1.02) = 500 + 10(1.02) - 4.9(1.02)^2 \approx 505.1 \, \text{m} \] ### d. Time when the object strikes the ground: The payload strikes the ground when its position \(s(t) = 0\): \[ 0 = 500 + 10t - 4.9t^2 \] Rearranging gives a quadratic equation: \[ 4.9t^2 - 10t - 500 = 0 \] Using the quadratic formula to solve for \(t\): \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 4.9 \cdot (-500)}}{2 \cdot 4.9} \] Calculating it will give the positive solution for \(t\) when the object hits the ground. Now, let’s add some engaging extra details! The cargo that bravely releases itself from the hot-air balloon is not just obeying physics; it's also a remarkable part of our scientific understanding of gravity! Imagine witnessing that moment—a game of drop and fall with physics! Next time you drop something, remember it’s a mini experiment of gravitational law in action! If you’re curious for more about the dynamics of falling objects, you might want to dive into physics books or online resources that discuss projectile motion and free-fall equations in greater detail. Whether you’re pondering how the same principles apply to sports or even rocket launches, the thrill of experimentation never ends!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad