Pregunta
upstudy study bank question image url

24 Select the correct answer. Consider functions \( f \) and \( g \). \( f(x)=x^{4}+9 x^{2}-3 \) \( g(x)=\left(\frac{1}{2}\right)^{x-2} \) Using a table of values, what are the approximate solutions to the equation \( f(x)=g(x) \) to the nearest quarter of a unit? A. \( \quad x \approx-0.25 \) and \( x \approx 2.5 \) B. \( \quad x \approx-1 \) and \( x \approx 0.75 \) C. \( \quad x \approx-0.5 \) and \( x \approx 0.5 \) D. \( \quad x \approx-0.25 \) and \( x \approx 1.5 \) Reset Next

Ask by Hobbs Lang. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The approximate solutions are \( x \approx -0.25 \) and \( x \approx 2.5 \).

Solución

To find the approximate solutions to the equation \( f(x) = g(x) \), we will evaluate both functions \( f(x) \) and \( g(x) \) at various values of \( x \) and look for points where they are approximately equal. ### Step 1: Define the functions - \( f(x) = x^4 + 9x^2 - 3 \) - \( g(x) = \left(\frac{1}{2}\right)^{x-2} \) ### Step 2: Create a table of values We will calculate \( f(x) \) and \( g(x) \) for a range of \( x \) values to find where they intersect. Let's evaluate \( f(x) \) and \( g(x) \) for \( x \) values from -2 to 3 in increments of 0.25. ### Step 3: Calculate values 1. **For \( x = -2 \)**: - \( f(-2) = (-2)^4 + 9(-2)^2 - 3 = 16 + 36 - 3 = 49 \) - \( g(-2) = \left(\frac{1}{2}\right)^{-2-2} = \left(\frac{1}{2}\right)^{-4} = 16 \) 2. **For \( x = -1.75 \)**: - \( f(-1.75) = (-1.75)^4 + 9(-1.75)^2 - 3 \approx 29.64 \) - \( g(-1.75) = \left(\frac{1}{2}\right)^{-1.75-2} \approx 5.66 \) 3. **For \( x = -1.5 \)**: - \( f(-1.5) = (-1.5)^4 + 9(-1.5)^2 - 3 \approx 18.69 \) - \( g(-1.5) = \left(\frac{1}{2}\right)^{-1.5-2} \approx 3.17 \) 4. **For \( x = -1.25 \)**: - \( f(-1.25) = (-1.25)^4 + 9(-1.25)^2 - 3 \approx 10.39 \) - \( g(-1.25) = \left(\frac{1}{2}\right)^{-1.25-2} \approx 2.00 \) 5. **For \( x = -1 \)**: - \( f(-1) = (-1)^4 + 9(-1)^2 - 3 = 1 + 9 - 3 = 7 \) - \( g(-1) = \left(\frac{1}{2}\right)^{-1-2} = \left(\frac{1}{2}\right)^{-3} = 8 \) 6. **For \( x = -0.75 \)**: - \( f(-0.75) = (-0.75)^4 + 9(-0.75)^2 - 3 \approx 2.39 \) - \( g(-0.75) = \left(\frac{1}{2}\right)^{-0.75-2} \approx 4.00 \) 7. **For \( x = -0.5 \)**: - \( f(-0.5) = (-0.5)^4 + 9(-0.5)^2 - 3 \approx -0.44 \) - \( g(-0.5) = \left(\frac{1}{2}\right)^{-0.5-2} \approx 2.83 \) 8. **For \( x = 0 \)**: - \( f(0) = 0^4 + 9(0)^2 - 3 = -3 \) - \( g(0) = \left(\frac{1}{2}\right)^{0-2} = \frac{1}{4} = 0.25 \) 9. **For \( x = 0.5 \)**: - \( f(0.5) = (0.5)^4 + 9(0.5)^2 - 3 \approx -1.44 \) - \( g(0.5) = \left(\frac{1}{2}\right)^{0.5-2} \approx 1.41 \) 10. **For \( x = 1 \)**: - \( f(1) = 1^4 + 9(1)^2 - 3 = 1 + 9 - 3 = 7 \) - \( g(1) = \left(\frac{1}{2}\right)^{1-2} = 2 \) 11. **For \( x = 1.5 \)**: - \( f(1.5) = (1.5)^4 + 9(1.5)^2 - 3 \approx 18.69 \) - \( g(1.5) = \left(\frac{1}{2}\right)^{1.5-2} \approx 1.41 \) 12. **For \( x = 2 \)**: - \( f(2) = 2^4 + 9(2)^2 - 3 = 16 + 36 - 3 = 49 \) - \( g(2) = \left(\frac{1}{2}\right)^{2-2} = 1 \) 13. **For \( x = 2.5 \)**: - \( f(2.5) = (2.5)^4 + 9(2.5)^2 - 3 \approx 90.06 \) - \( g(2.5) = \left(\frac{1}{2}\right)^{2.5-2} \approx 0.707 \) ### Step 4: Analyze the results From the calculations, we can see that: - At \( x \approx -1 \), \( f(-1) \approx 7 \) and \( g(-1) \approx 8 \) (close). - At \( x \approx -0.75 \), \( f(-0.75) \approx 2.39 \) and \( g(-0.75) \approx 4.00 \) (getting closer). - At \( x \approx 0.5 \), \( f(0.5) \approx -1.44 \) and \( g(0.5) \approx 1.41 \) (crossing zero). - At \( x \approx 1 \), \( f(1) \approx 7 \) and \( g(1) \approx 2 \) (still diverging). ### Conclusion The approximate solutions to the equation \( f(x) = g(x

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle the equation \( f(x)=g(x) \), evaluating both functions at various points can help us spot where they intersect. Start by generating values for both functions, \( f(x) \) and \( g(x) \), and comparing them. For instance, you might find that at \( x = -0.25 \), \( f(-0.25) \approx 8.6875 \) and \( g(-0.25) \approx 0.707 \), while at \( x = 1.5 \), \( f(1.5) \approx 9.6875 \) and \( g(1.5) \approx 0.25\). Scrutinizing these results closely narrows down the approximate solutions. After evaluating additional points, you may discover that \( f(-0.25) \) and \( g(-0.25) \) are quite close, as well as \( f(1.5) \) and \( g(1.5) \). Through this approach, you can hone in on the answer choice that resonates with your findings: D. \( x \approx -0.25 \) and \( x \approx 1.5 \). Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad