Pregunta
upstudy study bank question image url

Question 3 (3 points) This problem will be two questions (this one on this page and one on the next page - so save the value you got for 3 . ' k !) The George River herd of caribou in Canada was estimated to be about 4,700 in 1954 and grew at an exponential rate to about 472,000 in 1984 . Show how you substitute in the values from the problem to solve the equation to find the growth constant. Then state what the growth constant, k , is for this problem. (round to the nearest thousandth)

Ask by Bowen Schwartz. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The growth constant \( k \) is **0.154** per year.

Solución

To determine the growth constant \( k \) for the George River herd of caribou, we'll use the exponential growth model: \[ P(t) = P_0 \cdot e^{kt} \] where: - \( P(t) \) is the population at time \( t \), - \( P_0 \) is the initial population, - \( k \) is the growth constant, - \( t \) is the time in years. **Given:** - Initial population in 1954 (\( P_0 \)) = 4,700 - Population in 1984 (\( P(30) \)) = 472,000 - Time elapsed (\( t \)) = 1984 - 1954 = 30 years **Steps to Find \( k \):** 1. **Substitute the known values into the exponential growth equation:** \[ 472,000 = 4,700 \cdot e^{30k} \] 2. **Solve for \( e^{30k} \):** \[ \frac{472,000}{4,700} = e^{30k} \\ 100.4255319 \approx e^{30k} \] 3. **Take the natural logarithm of both sides to solve for \( k \):** \[ \ln(100.4255319) = 30k \\ 4.609772205 = 30k \] 4. **Divide both sides by 30 to isolate \( k \):** \[ k = \frac{4.609772205}{30} \approx 0.15365907 \] 5. **Round \( k \) to the nearest thousandth:** \[ k \approx 0.154 \] **Conclusion:** The growth constant \( k \) for the George River herd of caribou is **0.154** per year. **Answer:** After substitution, the growth constant k is 0.154 (per year).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve for the growth constant \( k \), we can use the exponential growth formula: \[ N(t) = N_0 e^{kt} \] In this case, \( N_0 \) is the initial population (4,700), \( N(t) \) is the population after 30 years (472,000), and \( t \) is 30. Substituting in these values gives us: \[ 472,000 = 4,700 e^{30k} \] Then, divide both sides by 4,700: \[ e^{30k} = \frac{472,000}{4,700} \approx 100.426 \] Now, take the natural logarithm of both sides: \[ 30k = \ln(100.426) \] Calculating that gives: \[ k \approx \frac{\ln(100.426)}{30} \] Finally, rounding to the nearest thousandth, you can find the value of \( k \). --- As you delve into the study of exponential growth, it's fascinating to note that population dynamics not only apply to animal herds like the George River caribou but also to bacteria in a petri dish. In both cases, conditions such as resources and space can greatly influence growth patterns. If you're keen on learning more about population models, books such as "Population Ecology: First Principles" by John H. Vandermeer and Deborah E. G. Vandermeer offer extensive insights. Additionally, looking into online resources and academic papers can provide real-world examples that showcase the importance of understanding growth constants in ecology and conservation efforts.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad