Evaluate the limit \( \lim _{x \rightarrow \infty} \frac{10 x^{3}-3 x^{2}-11 x}{9-11 x-4 x^{3}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To evaluate the limit \[ \lim _{x \rightarrow \infty} \frac{10 x^{3}-3 x^{2}-11 x}{9-11 x-4 x^{3}}, \] we first look at the leading terms of the numerator and denominator, since for \(x \to \infty\), these terms will dominate the behavior of the expression. The leading term in the numerator is \(10x^3\) and the leading term in the denominator is \(-4x^3\). Thus, we can rewrite the limit focusing on these leading terms: \[ \lim_{x \to \infty} \frac{10x^3 - 3x^2 - 11x}{9 - 11x - 4x^3} \approx \lim_{x \to \infty} \frac{10x^3}{-4x^3}. \] Simplifying this gives: \[ \lim_{x \to \infty} \frac{10}{-4} = -\frac{10}{4} = -\frac{5}{2}. \] Therefore, the limit is \[ \boxed{-\frac{5}{2}}. \]