Pregunta
upstudy study bank question image url

Use the shell method to find the volume of the solid formed when a hole of radius 6 is drilled symmetrically along the axis of a right circular cone of radius 8 and height 12 . Model the situation on a set of axes by placing the center of the base of the cone at the origin and the cone's axis along the positive \( y \)-axis. Set up the integral that gives the volume of the solid using the shell method. Use nonnegative and increasing limits of integration. Select the correct choice below and fill in the answer boxes to complete your choice.

Ask by Bowen Reid. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume integral using the shell method is: \[ V = 2\pi \int_{0}^{12} \left( y \left( \frac{2}{3} y - 6 \right) \right) \, dy \]

Solución

To find the volume of the solid formed when a hole of radius 6 is drilled symmetrically along the axis of a right circular cone of radius 8 and height 12 using the shell method, we can follow these steps: ### Step 1: Understand the Geometry 1. **Cone Dimensions**: - Radius \( R = 8 \) - Height \( H = 12 \) 2. **Drilled Hole**: - Radius of the hole \( r = 6 \) ### Step 2: Set Up the Cone Equation The equation of the cone can be derived from its geometry. The cone's vertex is at the origin (0,0) and the base is at \( y = 12 \). The radius of the cone at any height \( y \) can be expressed as: \[ x = \frac{R}{H} y = \frac{8}{12} y = \frac{2}{3} y \] ### Step 3: Shell Method Setup Using the shell method, we will integrate with respect to \( y \). The volume of a cylindrical shell is given by: \[ V = 2\pi \int_{a}^{b} (radius)(height) \, dy \] - **Radius**: The distance from the axis of rotation (the \( y \)-axis) to the shell, which is \( x \). - **Height**: The height of the shell, which is the difference between the outer radius of the cone and the inner radius of the hole. ### Step 4: Determine Limits of Integration The limits of integration will be from \( y = 0 \) to \( y = 12 \) (the height of the cone). ### Step 5: Set Up the Integral 1. **Outer Radius**: The outer radius of the cone at height \( y \) is \( x = \frac{2}{3} y \). 2. **Inner Radius**: The inner radius (the hole) is constant at \( r = 6 \). Thus, the height of the shell is: \[ \text{Height} = \frac{2}{3} y - 6 \] ### Step 6: Write the Integral The volume integral using the shell method is: \[ V = 2\pi \int_{0}^{12} \left( y \left( \frac{2}{3} y - 6 \right) \right) \, dy \] ### Final Integral Expression The integral that gives the volume of the solid is: \[ V = 2\pi \int_{0}^{12} \left( y \left( \frac{2}{3} y - 6 \right) \right) \, dy \] This integral can be evaluated to find the volume of the solid. Would you like me to calculate the volume?

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To use the shell method for finding the volume of the solid formed when a hole is drilled through a cone, we first need to set up our functions. The cone can be expressed by the equation of the line that connects its apex (point at the top of the cone) to the base. Since the height of the cone is 12 and the radius is 8, the slope of the line can be calculated as the change in radius over the change in height, which gives us the equation of the line as \( y = -\frac{3}{2}x + 12 \). Now, we can analyze the cylindrical shell created by rotating the area around the y-axis. The outer radius is given by \( r(y) = 8 \) and the inner radius from the hole, \( r_h(y) = 6 \) for depths above the x-axis. The height of our shell at any given y-value is calculated from the equation of the cone and the hole’s radius. Thus, the volume \( V \) can be calculated using the shell method by setting up the following integral: \[ V = 2\pi \int_{0}^{12} (r(y))(h(y)) \, dy = 2\pi \int_{0}^{12} \left(8^2 - 6^2\right) dy. \] Evaluating this gives you the total volume of the solid after drilling the hole. Simple! Now grab your calculator and get to integrating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad