Pregunta
upstudy study bank question image url

Solve the system of equations by graphing. Check your solution. Part 1 of 2 \( \begin{aligned} y & =-2 x+3 \\ 2 y+4 x & =6\end{aligned} \)

Ask by Schultz Montgomery. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system has infinitely many solutions because the lines are parallel and never intersect.

Solución

Solve the system of equations \( y=-2x+3;2y+4x=6 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}y=-2x+3\\2y+4x=6\end{array}\right.\) - step1: Substitute the value of \(y:\) \(2\left(-2x+3\right)+4x=6\) - step2: Simplify: \(6=6\) - step3: Calculate: \(\left(x,y\right) = \left(x,-2x+3\right),x \in \mathbb{R}\) - step4: Alternative Form: \(\textrm{Infinitely many solutions}\) The system of equations \(y = -2x + 3\) and \(2y + 4x = 6\) has infinitely many solutions. This means that the lines represented by these equations are parallel and never intersect, resulting in an infinite number of solutions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the equations, start with the first equation, \( y = -2x + 3 \). This line has a y-intercept at (0, 3) and a slope of -2, meaning for every 1 unit you move to the right on the x-axis, you move down 2 units. For the second equation, \( 2y + 4x = 6 \), you can simplify it by dividing everything by 2 to get \( y + 2x = 3 \) or \( y = -2x + 3 \). Notice that this is the same line as the first equation! When you graph both equations, you'll see that they are superimposed, meaning they overlap completely. This indicates that the system has infinitely many solutions since any point on the line \( y = -2x + 3 \) is a solution. To check, you can substitute any point on the line back into the original equations to ensure both hold true. For instance, if you take the point (0, 3), plugging into both equations gives \( 3 = -2(0) + 3 \) and \( 2(3) + 4(0) = 6 \), confirming that (0, 3) is indeed a solution!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad