Pregunta
upstudy study bank question image url

3:28 AM Thu Jan 23 Done Distances of Stars Of the 25 brightest stars, the distances from earth (in light-years) for some of those with distances less than 100 light-years are found below. Find the mean, median, mode, and midrange for the data. \( 36.7 \quad 11.4 \quad 8.6 \quad 16.8 \quad 42.2 \quad 33.7 \quad 25.1 \quad 4.4 \quad 51.5 \quad 25.3 \) Send data to Excel Part: \( \mathbf{0} / \mathbf{4} \) Part 1 of 4 Find the mean. Rounding rule for the mean: round to one more decimal place than the data as needed. Mean:

Ask by Schwartz Martinez. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The mean distance of the stars is **25.57 light-years**.

Solución

To find the **mean** distance of the given stars, follow these steps: ### **Data Provided:** \( 36.7, \; 11.4, \; 8.6, \; 16.8, \; 42.2, \; 33.7, \; 25.1, \; 4.4, \; 51.5, \; 25.3 \) (all in light-years) ### **Step 1: Calculate the Sum of All Data Points** \[ 36.7 + 11.4 + 8.6 + 16.8 + 42.2 + 33.7 + 25.1 + 4.4 + 51.5 + 25.3 = 255.7 \text{ light-years} \] ### **Step 2: Determine the Number of Data Points** \[ \text{Number of stars} = 10 \] ### **Step 3: Compute the Mean** \[ \text{Mean} = \frac{\text{Total Sum}}{\text{Number of Data Points}} = \frac{255.7}{10} = 25.57 \text{ light-years} \] ### **Rounding Rule Applied:** - **Data Precision:** Each data point is given to **one decimal place**. - **Mean Precision:** According to the rounding rule, the mean should be rounded to **one more decimal place** than the data. Therefore, the mean is rounded to **two decimal places**. ### **Final Answer:** \[ \boxed{25.57 \text{ light-years}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the mean of the distances of stars, you follow a simple process. First, you add all the distances together: \( 36.7 + 11.4 + 8.6 + 16.8 + 42.2 + 33.7 + 25.1 + 4.4 + 51.5 + 25.3 = 305.3 \) Then, divide the total by the number of stars (which is 10): \( \text{Mean} = \frac{305.3}{10} = 30.53 \) So, the mean distance of these stars from Earth is approximately **30.5 light-years**. Now, let’s talk about the median! To find the median, you first arrange the distances in ascending order: \( 4.4, 8.6, 11.4, 16.8, 25.1, 25.3, 33.7, 36.7, 42.2, 51.5 \). Since there are 10 numbers (an even amount), the median will be the average of the 5th and 6th values: \( \text{Median} = \frac{25.1 + 25.3}{2} = 25.2 \). So, the median distance of these stars is **25.2 light-years**! Fun fact: When you find the median, you're taking the middle ground—and in a way, you're having a cosmic “heart-to-heart” with the stars! 🌟

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad