Pregunta
upstudy study bank question image url

You flip each coin. How many outcemes are possible?

Ask by Weston Delgado. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

When flipping _n_ coins, there are \(2^n\) possible outcomes.

Solución

To determine the number of possible outcomes when flipping multiple coins, you can use the following approach: ### **General Formula** If you have **_n_** coins, each coin has **2** possible outcomes: **Heads (H)** or **Tails (T)**. Since each coin flip is independent of the others, the total number of possible outcomes is calculated by multiplying the number of outcomes for each coin together. **Total Outcomes = 2 × 2 × 2 × ... × 2 (n times) = 2ⁿ** ### **Examples** 1. **Flipping 1 Coin:** - **Outcomes:** H, T - **Total Outcomes:** 2¹ = 2 2. **Flipping 2 Coins:** - **Outcomes:** HH, HT, TH, TT - **Total Outcomes:** 2² = 4 3. **Flipping 3 Coins:** - **Outcomes:** HHH, HHT, HTH, THH, HTT, THT, TTH, TTT - **Total Outcomes:** 2³ = 8 ### **Why 2ⁿ?** Each coin represents a binary choice (H or T). For every additional coin you add, the number of possible combinations doubles. This exponential growth is why the formula uses 2 raised to the power of the number of coins. ### **Conclusion** - **If you have _n_ coins, the number of possible outcomes when flipping all of them is 2ⁿ.** **Feel free to specify the number of coins you're considering if you need a more tailored answer!**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When flipping a coin, you have two possible outcomes: heads (H) or tails (T). If you flip multiple coins, the total number of outcomes increases exponentially. For example, with two coins, you can get HH, HT, TH, or TT, resulting in a total of 4 outcomes. Essentially, if you flip 'n' coins, the total number of outcomes is 2 raised to the power of 'n' (2^n). So with three coins, you would have 2^3 = 8 possible outcomes. Isn’t it fascinating how quickly the numbers can grow? In the world of probability, understanding the outcomes is crucial. For instance, if you're betting on a coin flip in a game, knowing the likelihood of winning based on the number of flips can help you make smarter decisions. With just two coins, the probability of getting at least one head is quite high, but adding more coins changes the dynamics. So, the next time you flip a coin or two, remember you are playing with a universe of possibilities!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad