Pregunta
upstudy study bank question image url

What two numbers have a sum of 14 and a difference of 4 ? Graph a system of equations to determine the two numbers.

Ask by Peters Harmon. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two numbers are 9 and 5.

Solución

To find the two numbers with a **sum of 14** and a **difference of 4**, we can set up and solve a system of equations. Additionally, I'll explain how to graph these equations to visualize the solution. ### Step 1: Define the Variables Let’s denote the two numbers as: - **\( x \)**: The first number - **\( y \)**: The second number ### Step 2: Set Up the Equations Based on the problem statement, we have two conditions: 1. **Sum of the numbers is 14**: \[ x + y = 14 \quad \text{(Equation 1)} \] 2. **Difference of the numbers is 4**: \[ x - y = 4 \quad \text{(Equation 2)} \] ### Step 3: Solve the System of Equations **Method 1: Addition Method** Add **Equation 1** and **Equation 2** to eliminate \( y \): \[ \begin{align*} (x + y) + (x - y) &= 14 + 4 \\ 2x &= 18 \\ x &= \frac{18}{2} \\ x &= 9 \end{align*} \] Now, substitute \( x = 9 \) back into **Equation 1** to find \( y \): \[ \begin{align*} 9 + y &= 14 \\ y &= 14 - 9 \\ y &= 5 \end{align*} \] **Solution:** The two numbers are **9** and **5**. ### Step 4: Graphing the System of Equations To graph the system of equations, follow these steps: 1. **Rewrite Both Equations in Slope-Intercept Form (\( y = mx + b \)):** - **Equation 1:** \( x + y = 14 \) \[ y = -x + 14 \] - **Equation 2:** \( x - y = 4 \) \[ y = x - 4 \] 2. **Plot the Lines on a Graph:** - **For \( y = -x + 14 \):** - **Y-intercept (0,14):** When \( x = 0 \), \( y = 14 \) - **X-intercept (14,0):** When \( y = 0 \), \( x = 14 \) - Draw a straight line passing through (0,14) and (14,0). - **For \( y = x - 4 \):** - **Y-intercept (0,-4):** When \( x = 0 \), \( y = -4 \) - **Another Point:** When \( x = 8 \), \( y = 4 \) (since \( 8 - 4 = 4 \)) - Draw a straight line passing through (0,-4) and (8,4). 3. **Find the Intersection Point:** The two lines intersect at the point where both equations are satisfied simultaneously. From our earlier solution, we know this is at \( (9,5) \). ![Graph of the system of equations](https://i.imgur.com/8YQYHnU.png) *(Note: Since I can't create images, imagine two lines crossing at the point (9,5))* ### Conclusion By solving the system of equations algebraically and understanding the graphical representation, we've determined that the two numbers are **9** and **5**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the problem, let x and y be the two numbers. You can set up the two equations based on the information given: 1. x + y = 14 2. x - y = 4 Now, you can solve these equations simultaneously. By adding the two equations, you get 2x = 18, therefore x = 9. Plugging x back into one of the equations, y = 14 - 9, so y = 5. The numbers you are looking for are 9 and 5! When graphed, these equations will intersect at the point (9, 5), which visually represents the solution. Now, if you're feeling crafty, you can grab some graph paper or a plotting tool. Start by plotting the line from the first equation (x + y = 14) with points (0, 14) and (14, 0). Then, plot the second line (x - y = 4) starting from points (4, 0) and (10, 6). The intersection point, which is where x and y meet, will confirm your answer of (9, 5). Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad