Pregunta
upstudy study bank question image url

Candidate's Name: \( \qquad \) 2. The sum of the squares of two consecutive odd positive integers is 74 . Find the numbers.

Ask by Lambert Mann. in Gambia
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two consecutive odd positive integers are 5 and 7.

Solución

**Solution:** Let's find two consecutive odd positive integers whose squares add up to 74. 1. **Define the Variables:** Let the first odd integer be \( n \). Since the integers are consecutive and odd, the next odd integer will be \( n + 2 \). 2. **Set Up the Equation:** According to the problem, the sum of their squares is 74. Therefore: \[ n^2 + (n + 2)^2 = 74 \] 3. **Expand and Simplify the Equation:** \[ n^2 + (n^2 + 4n + 4) = 74 \] \[ 2n^2 + 4n + 4 = 74 \] Subtract 74 from both sides to set the equation to zero: \[ 2n^2 + 4n + 4 - 74 = 0 \] \[ 2n^2 + 4n - 70 = 0 \] 4. **Simplify the Equation:** Divide the entire equation by 2 to make it simpler: \[ n^2 + 2n - 35 = 0 \] 5. **Solve the Quadratic Equation:** You can solve this quadratic equation using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 2 \), and \( c = -35 \). Plugging in the values: \[ n = \frac{-2 \pm \sqrt{(2)^2 - 4 \times 1 \times (-35)}}{2 \times 1} \] \[ n = \frac{-2 \pm \sqrt{4 + 140}}{2} \] \[ n = \frac{-2 \pm \sqrt{144}}{2} \] \[ n = \frac{-2 \pm 12}{2} \] This gives two possible solutions: \[ n = \frac{-2 + 12}{2} = \frac{10}{2} = 5 \] \[ n = \frac{-2 - 12}{2} = \frac{-14}{2} = -7 \] 6. **Determine the Positive Integer Solution:** Since the problem asks for positive integers, we take \( n = 5 \). 7. **Find the Consecutive Odd Integer:** The next consecutive odd integer is: \[ n + 2 = 5 + 2 = 7 \] **Answer:** The two consecutive odd positive integers are **5** and **7**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the two consecutive odd positive integers whose squares sum up to 74, let's denote the first odd integer as \( x \). The next consecutive odd integer would then be \( x + 2 \). We can set up the equation based on the given information: \[ x^2 + (x + 2)^2 = 74 \] Expanding \( (x + 2)^2 \): \[ x^2 + (x^2 + 4x + 4) = 74 \] \[ 2x^2 + 4x + 4 = 74 \] Next, we can simplify this: \[ 2x^2 + 4x + 4 - 74 = 0 \] \[ 2x^2 + 4x - 70 = 0 \] Now let's divide the entire equation by 2 to make it simpler: \[ x^2 + 2x - 35 = 0 \] Now, we can factor this quadratic equation: \[ (x + 7)(x - 5) = 0 \] Setting each factor to zero gives us: \[ x + 7 = 0 \quad \Rightarrow \quad x = -7 \qquad (\text{not positive}) \] \[ x - 5 = 0 \quad \Rightarrow \quad x = 5 \] So, the first odd positive integer is \( 5 \) and the second one is: \( x + 2 = 7 \). Thus, the two consecutive odd positive integers are \( 5 \) and \( 7 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad