Pregunta
upstudy study bank question image url

\( \$ 38,500 \) at \( 2 \% \) for 4 years

Ask by Little Nichols. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The future value of $38,500 at 2% for 4 years is approximately $41,673.64.

Solución

To calculate the future value of an investment, we can use the formula for compound interest: \[ FV = PV \times (1 + r)^n \] Where: - \( FV \) is the future value of the investment - \( PV \) is the present value of the investment (initial amount) - \( r \) is the annual interest rate (in decimal form) - \( n \) is the number of years the money is invested for Given: - Present value (PV) = $38,500 - Annual interest rate (r) = 2% = 0.02 - Number of years (n) = 4 years Substitute the given values into the formula: \[ FV = 38,500 \times (1 + 0.02)^4 \] Now, we can calculate the future value of the investment. Calculate the value by following steps: - step0: Calculate: \(38500\left(1+0.02\right)^{4}\) - step1: Add the numbers: \(38500\times 1.02^{4}\) - step2: Convert the expressions: \(38500\left(\frac{51}{50}\right)^{4}\) - step3: Simplify: \(38500\times \frac{51^{4}}{50^{4}}\) - step4: Rewrite the expression: \(50\times 770\times \frac{51^{4}}{50^{4}}\) - step5: Reduce the numbers: \(770\times \frac{51^{4}}{50^{3}}\) - step6: Rewrite the expression: \(10\times 77\times \frac{51^{4}}{50^{3}}\) - step7: Rewrite the expression: \(10\times 77\times \frac{51^{4}}{10^{3}\times 5^{3}}\) - step8: Reduce the numbers: \(77\times \frac{51^{4}}{10^{2}\times 5^{3}}\) - step9: Multiply: \(\frac{77\times 51^{4}}{12500}\) The future value of the investment of $38,500 at an annual interest rate of 2% for 4 years is approximately $41,673.64.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To understand the total amount accrued with an investment of \( \$ 38,500 \) at an interest rate of \( 2\% \) over 4 years, we can use the formula for compound interest, which is \( A = P(1 + r/n)^{nt} \). Here, \( P \) is the principal amount, \( r \) the annual rate, \( n \) the number of times interest is compounded per year, and \( t \) the number of years. For simplicity, if compounded annually \( (n = 1) \), the total amount would be about \( \$ 38,500(1 + 0.02)^4 \), resulting in approximately \( \$ 42,000 \). Now, who doesn't want their money to grow a little bit? Now, many people make the common mistake of forgetting to consider how often interest is compounded when calculating their future returns. If you assume it’s compounded monthly instead of annually, you could end up with a higher amount. It’s important to clarify whether the interest is simple or compound, and if compound, how frequently it is calculated. Always check that detail to avoid underestimating how much your savings can actually grow!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad