Simplify: \( \frac{3 x^{2}+17 x+10}{3 x^{2}+32 x+20} \) \( \frac{3 x+2}{3 x+4} \) \( \frac{1}{2} \) \( \frac{x+5}{x+10} \) \( \frac{17 x+10}{32 x+20} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify the expression \( \frac{3 x^{2}+17 x+10}{3 x^{2}+32 x+20} \), we start by factoring both the numerator and the denominator. The numerator, \( 3x^2 + 17x + 10 \), factors into \( (3x + 2)(x + 5) \). For the denominator, \( 3x^2 + 32x + 20 \), it factors into \( (3x + 4)(x + 5) \). Now, substituting these factored forms back into the original expression, we have: \[ \frac{(3x + 2)(x + 5)}{(3x + 4)(x + 5)} \] We can simplify by canceling \( (x + 5) \) from the numerator and denominator (assuming \( x \neq -5 \)): \[ \frac{3x + 2}{3x + 4} \] This gives us the simplified result of \( \frac{3x + 2}{3x + 4} \). Thus, the final answer is: \[ \frac{3x + 2}{3x + 4} \]