Pregunta
upstudy study bank question image url

The equation, with a restribtion on \( x \), is the lemminal side of an angle of in standard position. \[ 3 x+y=0, x \geq 0 \] ver 47 \[ \sin 0=-\frac{3 \sqrt{10}}{10} \] (simplify your answer Use integers of factons for any numbers in the expression. Type an exact answen, using radicats as needed. Rationaltye all denominators) B. The Anction is undafned. Selact the cored cholce balow and, if necessang, fill in the answer box to complate your choiee. A. \( 8080=\frac{\sqrt{10}}{10} \) (simplify your answer Use integers of factions for any numbers in the expression. Type an exact answer, using radicals as needed. Rationalise all denominators) B. The Anction is undafined. Select the comect cholee below and, if neeossany, fili in the answer box to complete your choiee. A. \( \tan 0=-3 \) (Simplity your answer. Use integers of factions for any numbers in the expression. Type an exact answer, using radicals as needed. Rationalise all denominators) B. The Annction is undefined. Select the correct choloe below and, if necessary, fill in the answer box to complete your choiees A. \( 2880= \) \( \square \) (Simplity your answer. Use inlegers of factions for any numbers in the expression. Type an exact answer, using radicals as needed. Rationalife all denominatons) B. The function is undefined. Clear all

Ask by Welch Byrd. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Final Answers:** - \( \sin(0) = -\frac{3\sqrt{10}}{10} \) is undefined. - \( \tan(0) = -3 \) is undefined. - \( 2880 = \) is undefined. **Choices:** A. Not applicable. B. The function is undefined.

Solución

Let's break down the problem step by step. ### Step 1: Analyze the given equation The equation given is: \[ 3x + y = 0 \] with the restriction \( x \geq 0 \). We can rearrange this equation to express \( y \) in terms of \( x \): \[ y = -3x \] ### Step 2: Determine the angle in standard position The line represented by the equation \( y = -3x \) has a slope of \(-3\). The angle \( \theta \) that this line makes with the positive x-axis can be found using the tangent function: \[ \tan(\theta) = \frac{y}{x} = -3 \] ### Step 3: Find the sine of the angle To find \( \sin(\theta) \), we can use the relationship between sine, cosine, and tangent. We know: \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \] From the tangent value, we can set: \[ \sin(\theta) = -3k \quad \text{and} \quad \cos(\theta) = k \] for some positive \( k \). Using the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] we substitute: \[ (-3k)^2 + k^2 = 1 \] which simplifies to: \[ 9k^2 + k^2 = 1 \implies 10k^2 = 1 \implies k^2 = \frac{1}{10} \implies k = \frac{1}{\sqrt{10}} \] Now substituting back to find \( \sin(\theta) \): \[ \sin(\theta) = -3k = -3 \cdot \frac{1}{\sqrt{10}} = -\frac{3}{\sqrt{10}} \] To rationalize the denominator: \[ \sin(\theta) = -\frac{3\sqrt{10}}{10} \] ### Step 4: Evaluate the choices 1. **For \( \sin(0) \)**: - The statement \( \sin(0) = -\frac{3\sqrt{10}}{10} \) is incorrect because \( \sin(0) = 0 \). Thus, the function is undefined. 2. **For \( \tan(0) \)**: - The statement \( \tan(0) = -3 \) is incorrect because \( \tan(0) = 0 \). Thus, the function is undefined. 3. **For the last choice**: - The statement \( 2880 = \square \) is unclear without context. However, if we assume it relates to the previous calculations, we can conclude that the function is undefined. ### Final Answers - For \( \sin(0) \): **B. The function is undefined.** - For \( \tan(0) \): **B. The function is undefined.** - For \( 2880 = \square \): **B. The function is undefined.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The equation \(3x + y = 0\) represents a linear function where the slope is \(-3\) and the y-intercept is \(0\). Graphically, this line intersects the y-axis at the origin (0, 0) and extends in the negative y-direction as x increases. Since \(x \geq 0\) is specified, the relevant portion of the line is in the first quadrant where angle measurements are commonly discussed in trigonometric terms. When tackling trigonometric functions for angles in standard position, such as \( \tan(0) = -3 \), it's critical to remember the unit circle's implications. Since \( \tan \) denotes the ratio of the opposite side to the adjacent side in a right triangle, ensure that the triangle's orientation and the correct quadrant are taken into account while calculating to avoid common pitfalls—like using the wrong signs or mistakenly interpreting the angle's placement!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad