Pregunta
upstudy study bank question image url

An object is dropped trom a tower, 1600 Htab the object's volocity at the moment of impact? It takes \( \square \) sec for the object to hit the groun (Round to the nearest tenth as needed.)

Ask by Rodriquez Hardy. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The object takes 10.0 seconds to hit the ground and has a velocity of 320 ft/s at impact.

Solución

To solve this problem, we'll use the principles of free fall under the influence of gravity. Here's a step-by-step breakdown: ### Given: - **Height (h)** = 1600 feet - **Initial velocity (u)** = 0 ft/s (since the object is dropped) - **Acceleration due to gravity (g)** = 32 ft/s² ### To Find: 1. **Time (t)** it takes for the object to hit the ground. 2. **Velocity (v)** at the moment of impact. ### 1. Calculating the Time (t): We use the equation for the distance covered under constant acceleration: \[ h = \frac{1}{2} g t^2 \] Plugging in the known values: \[ 1600 = \frac{1}{2} \times 32 \times t^2 \] \[ 1600 = 16 t^2 \] \[ t^2 = \frac{1600}{16} = 100 \] \[ t = \sqrt{100} = 10 \text{ seconds} \] ### 2. Calculating the Velocity (v) at Impact: We can use the equation: \[ v = g t \] Plugging in the known values: \[ v = 32 \times 10 = 320 \text{ ft/s} \] ### **Final Answers:** - **Time to hit the ground:** \( \boxed{10.0\ \text{seconds}} \) - **Velocity at impact:** \( \boxed{320\ \text{ft/s}} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When an object is dropped from a height, we can use the equation \( v = g \cdot t \), where \( v \) is the final velocity, \( g \) is the acceleration due to gravity (approximately \( 9.81 \, m/s^2 \)), and \( t \) is the time taken to fall. To find the time it takes to hit the ground, we can use the formula \( h = \frac{1}{2} g t^2 \). Rearranging it for \( t \) gives \( t = \sqrt{\frac{2h}{g}} \). Plugging in the values, we get \( t = \sqrt{\frac{2 \cdot 1600}{9.81}} \), which gives you around 18.0 seconds for the fall. Therefore, the velocity at impact can be calculated as \( v = 9.81 \cdot 18.0 \), resulting in approximately 176.0 m/s just before hitting the ground. Keep in mind that this model assumes no air resistance, so in real-life situations, the object might fall slightly slower than calculated due to drag!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad