Pregunta
upstudy study bank question image url

The following rational equation has denominators that contain variables. For this equation, a. Write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. \( \frac{x-7}{2 x}+1=\frac{x+3}{x} \) a. What is/are the value or values of the variable that make(s) the denominators zero? \( x=\square \) (Simplify your answer. Use a comma to separate answers as needed.) b. Solve the equation. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \( \{\square\} \). (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. The solution set is \( \{x \mid x \) is a real number\}. C. The solution set is \( \varnothing \).

Ask by Henry Daniel. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. \( x = 0 \) b. A. The solution set is \( \{13\} \).

Solución

a. The denominators in the equation are \(2x\) and \(x\). To find the restrictions, set each denominator equal to zero and solve for \(x\): \[ 2x = 0 \quad \Rightarrow \quad x = 0 \] \[ x = 0 \] Both denominators are zero when \(x = 0\). Therefore, the restriction is: \[ x = 0 \] b. To solve the equation \( \frac{x-7}{2x} + 1 = \frac{x+3}{x} \) while keeping the restriction \(x \neq 0\) in mind, follow these steps: 1. **Combine the terms on the left side:** \[ \frac{x-7}{2x} + 1 = \frac{x-7}{2x} + \frac{2x}{2x} = \frac{x-7 + 2x}{2x} = \frac{3x - 7}{2x} \] 2. **Set the two fractions equal to each other:** \[ \frac{3x - 7}{2x} = \frac{x + 3}{x} \] 3. **Cross-multiply to eliminate the denominators:** \[ (3x - 7) \cdot x = (x + 3) \cdot 2x \] \[ 3x^2 - 7x = 2x^2 + 6x \] 4. **Move all terms to one side to form a quadratic equation:** \[ 3x^2 - 7x - 2x^2 - 6x = 0 \] \[ x^2 - 13x = 0 \] 5. **Factor the quadratic equation:** \[ x(x - 13) = 0 \] 6. **Solve for \(x\):** \[ x = 0 \quad \text{or} \quad x = 13 \] 7. **Apply the restriction \(x \neq 0\):** \[ x = 0 \quad \text{is not valid} \] \[ x = 13 \quad \text{is valid} \] **Final Answer:** **a.** \( x = 0 \) **b.** A. The solution set is \( \{13\} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To identify the values of the variable that make the denominators zero, we inspect the denominators in the equation \( \frac{x-7}{2x} + 1 = \frac{x+3}{x} \). The denominators are \( 2x \) and \( x \). Setting these equal to zero: 1. \( 2x = 0 \) ⇒ \( x = 0 \) 2. \( x = 0 \) Hence, the only restriction on the variable is \( x = 0 \). Now, addressing the equation \( \frac{x-7}{2x} + 1 = \frac{x+3}{x} \), we first eliminate the denominators by multiplying through by \( 2x \) (remembering \( x \neq 0 \)): \[ (x - 7) + 2x = 2(x + 3) \] This simplifies to: \[ x - 7 + 2x = 2x + 6 \] Combining like terms gives us: \[ 3x - 7 = 2x + 6 \] Now subtract \( 2x \) from both sides: \[ x - 7 = 6 \] Adding 7 to both sides results in: \[ x = 13 \] Since \( x = 13 \) does not violate our earlier restriction of \( x \neq 0 \), we have our solution! A. The solution set is \( \{13\} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad