Pregunta
upstudy study bank question image url

1. (a) Solve quadratic equations by completing the square. \( \begin{array}{ll}\text { (i) } 10=3 x-x^{2} & \text { (ii) } 4 x^{2}-x=8\end{array} \)

Ask by Hampton Weston. in Zambia
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are: (i) No real solutions. (ii) \(x = \frac{1 - \sqrt{129}}{8}\) and \(x = \frac{1 + \sqrt{129}}{8}\).

Solución

Solve the equation \( 10=3x-x^{2} \). Solve the equation(The complex numbers system) by following steps: - step0: Solve using the quadratic formula in the complex numbers system: \(10=3x-x^{2}\) - step1: Swap the sides: \(3x-x^{2}=10\) - step2: Move the expression to the left side: \(3x-x^{2}-10=0\) - step3: Rewrite in standard form: \(-x^{2}+3x-10=0\) - step4: Multiply both sides: \(x^{2}-3x+10=0\) - step5: Solve using the quadratic formula: \(x=\frac{3\pm \sqrt{\left(-3\right)^{2}-4\times 10}}{2}\) - step6: Simplify the expression: \(x=\frac{3\pm \sqrt{-31}}{2}\) - step7: Simplify the expression: \(x=\frac{3\pm \sqrt{31}\times i}{2}\) - step8: Separate into possible cases: \(\begin{align}&x=\frac{3+\sqrt{31}\times i}{2}\\&x=\frac{3-\sqrt{31}\times i}{2}\end{align}\) - step9: Simplify the expression: \(\begin{align}&x=\frac{3}{2}+\frac{\sqrt{31}}{2}i\\&x=\frac{3-\sqrt{31}\times i}{2}\end{align}\) - step10: Simplify the expression: \(\begin{align}&x=\frac{3}{2}+\frac{\sqrt{31}}{2}i\\&x=\frac{3}{2}-\frac{\sqrt{31}}{2}i\end{align}\) - step11: Rewrite: \(x_{1}=\frac{3}{2}-\frac{\sqrt{31}}{2}i,x_{2}=\frac{3}{2}+\frac{\sqrt{31}}{2}i\) - step12: Remove the complex number(s): \(\textrm{No real solution}\) Solve the equation \( 4x^{2}-x=8 \). Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(4x^{2}-x=8\) - step1: Move the expression to the left side: \(4x^{2}-x-8=0\) - step2: Solve using the quadratic formula: \(x=\frac{1\pm \sqrt{\left(-1\right)^{2}-4\times 4\left(-8\right)}}{2\times 4}\) - step3: Simplify the expression: \(x=\frac{1\pm \sqrt{\left(-1\right)^{2}-4\times 4\left(-8\right)}}{8}\) - step4: Simplify the expression: \(x=\frac{1\pm \sqrt{129}}{8}\) - step5: Separate into possible cases: \(\begin{align}&x=\frac{1+\sqrt{129}}{8}\\&x=\frac{1-\sqrt{129}}{8}\end{align}\) - step6: Rewrite: \(x_{1}=\frac{1-\sqrt{129}}{8},x_{2}=\frac{1+\sqrt{129}}{8}\) The solutions to the quadratic equations by completing the square are: (i) \(10=3x-x^{2}\) has no real solution. (ii) \(4x^{2}-x=8\) has two solutions: \(x_{1}=\frac{1-\sqrt{129}}{8}\) and \(x_{2}=\frac{1+\sqrt{129}}{8}\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation \(10 = 3x - x^2\), first rearrange it into standard form: \(x^2 - 3x + 10 = 0\). Then, complete the square: 1. Move 10 to the other side: \(x^2 - 3x = -10\). 2. Take half of -3 (\(-\frac{3}{2}\)), square it (\(\frac{9}{4}\)), and add it to both sides: \(x^2 - 3x + \frac{9}{4} = -10 + \frac{9}{4}\). 3. Simplify the right side: \(-10\) is \(-\frac{40}{4}\), so \(-\frac{40}{4} + \frac{9}{4} = -\frac{31}{4}\). 4. Now you have: \((x - \frac{3}{2})^2 = -\frac{31}{4}\). This means there are no real solutions, only complex ones! For the equation \(4x^2 - x = 8\), rearranging gives us \(4x^2 - x - 8 = 0\). Now we can complete the square: 1. Divide the entire equation by 4: \(x^2 - \frac{1}{4}x - 2 = 0\). 2. Move -2 to the other side: \(x^2 - \frac{1}{4}x = 2\). 3. Take half of \(-\frac{1}{4}\) (\(-\frac{1}{8}\)), square it (\(\frac{1}{64}\)), and add to both sides: \(x^2 - \frac{1}{4}x + \frac{1}{64} = 2 + \frac{1}{64}\). 4. The left becomes: \((x - \frac{1}{8})^2\). 5. Simplify right side: \(2\) is \(\frac{128}{64}\), so \(\frac{128}{64} + \frac{1}{64} = \frac{129}{64}\). 6. Thus, \((x - \frac{1}{8})^2 = \frac{129}{64}\). Taking the square root gives \(x - \frac{1}{8} = \pm \frac{\sqrt{129}}{8}\). So, \(x = \frac{1 \pm \sqrt{129}}{8}\). And there you have it—solutions via completing the square!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad