Pregunta

6. a) A binary operation * is defined on the set of real numbers as follows: \[\na * b=2^{-a}+b, \quad a, b \in \mathbf{R} \] (i) Is the operation * commutative? If not give a counter example. (ii) Find the value of \( -1 *(0 * 1) \) and \( (-1 * 0) * 1 \), and state whether \( * \) is associative.

Ask by Garza Cervantes. in Zambia
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The operation * is **not commutative** because \( 0 * 1 \neq 1 * 0 \). Additionally, * is **not associative** since \( -1 * (0 * 1) \neq (-1 * 0) * 1 \).

Solución

Let's analyze the binary operation \( * \) defined on the set of real numbers by: \[ a * b = 2^{-a} + b, \quad \text{for all } a, b \in \mathbb{R} \] ### (i) Commutativity of \( * \) A binary operation \( * \) is **commutative** if for all \( a, b \in \mathbb{R} \), \[ a * b = b * a \] Let's check whether this holds for our operation. **Example:** Let \( a = 0 \) and \( b = 1 \). - Compute \( 0 * 1 \): \[ 0 * 1 = 2^{-0} + 1 = 1 + 1 = 2 \] - Compute \( 1 * 0 \): \[ 1 * 0 = 2^{-1} + 0 = \frac{1}{2} + 0 = \frac{1}{2} \] Since \( 0 * 1 = 2 \) and \( 1 * 0 = \frac{1}{2} \), we have: \[ 0 * 1 \neq 1 * 0 \] **Conclusion:** The operation \( * \) is **not commutative**. The values \( 0 * 1 \) and \( 1 * 0 \) serve as a counterexample. --- ### (ii) Associativity of \( * \) A binary operation \( * \) is **associative** if for all \( a, b, c \in \mathbb{R} \), \[ a * (b * c) = (a * b) * c \] Let's evaluate both \( -1 * (0 * 1) \) and \( (-1 * 0) * 1 \) to check associativity. **Step 1:** Compute \( 0 * 1 \): \[ 0 * 1 = 2^{-0} + 1 = 1 + 1 = 2 \] **Step 2:** Compute \( -1 * (0 * 1) = -1 * 2 \): \[ -1 * 2 = 2^{-(-1)} + 2 = 2^{1} + 2 = 2 + 2 = 4 \] **Step 3:** Compute \( -1 * 0 \): \[ -1 * 0 = 2^{-(-1)} + 0 = 2^{1} + 0 = 2 + 0 = 2 \] **Step 4:** Compute \( (-1 * 0) * 1 = 2 * 1 \): \[ 2 * 1 = 2^{-2} + 1 = \frac{1}{4} + 1 = \frac{5}{4} \] **Comparison:** \[ -1 * (0 * 1) = 4 \quad \text{and} \quad (-1 * 0) * 1 = \frac{5}{4} \] Since \( 4 \neq \frac{5}{4} \), the operation \( * \) is **not associative**. --- ### **Final Summary:** 1. **Commutativity:** The operation \( * \) is **not commutative**. For example, \( 0 * 1 = 2 \) while \( 1 * 0 = \frac{1}{2} \). 2. **Associativity:** The operation \( * \) is **not associative**. Specifically, \( -1 * (0 * 1) = 4 \) differs from \( (-1 * 0) * 1 = \frac{5}{4} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine if the operation \( * \) is commutative, we need to check if \( a * b = b * a \) for all \( a, b \in \mathbf{R} \). Calculating \( a * b \): \[ a * b = 2^{-a} + b \] Calculating \( b * a \): \[ b * a = 2^{-b} + a \] For the operation to be commutative, both expressions must yield the same result for any \( a \) and \( b \). Let’s take a counter-example with \( a = 0 \) and \( b = 1 \): \[ 0 * 1 = 2^{-0} + 1 = 1 + 1 = 2 \] \[ 1 * 0 = 2^{-1} + 0 = \frac{1}{2} + 0 = \frac{1}{2} \] Since \( 0 * 1 \neq 1 * 0 \), the operation is not commutative. Next, we calculate \( -1 *(0 * 1) \) and \( (-1 * 0) * 1 \). First, find \( 0 * 1 \): \[ 0 * 1 = 2^{-0} + 1 = 1 + 1 = 2 \] Now, find \( -1 * 2 \): \[ -1 * 2 = 2^{-(-1)} + 2 = 2^{1} + 2 = 2 + 2 = 4 \] Next, find \( -1 * 0 \): \[ -1 * 0 = 2^{-(-1)} + 0 = 2^{1} + 0 = 2 + 0 = 2 \] Now calculate \( 2 * 1 \): \[ 2 * 1 = 2^{-2} + 1 = \frac{1}{4} + 1 = 1 + \frac{1}{4} = \frac{5}{4} \] Now we compare \( -1 *(0 * 1) = 4 \) and \( (-1 * 0) * 1 = \frac{5}{4} \). Since \( 4 \neq \frac{5}{4} \), the operation is not associative. So, in summary: (i) The operation \( * \) is not commutative since \( 0 * 1 \neq 1 * 0 \) as shown above. (ii) The operation \( * \) is not associative since \( -1 *(0 * 1) \neq (-1 * 0) * 1 \) because \( 4 \neq \frac{5}{4} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad