Find \( g(0), g(-5), g(7) \), and \( g\left(\frac{3}{2}\right) \) for \( g(x)=\frac{x}{\sqrt{25-x^{2}}} \). Find \( g(0) \). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( g(0)=\square \) \( \quad( \) Simplify your answer. Type an exact answer, using radicals as needed.) B. \( g(0) \) does not exist. C. \( g(0) \) is not a real number. A. \( g(-5) \). Select the correct choice below and, if necessary, fill in the answor box to complete your choice. B. \( \quad( \) Simplify your answer. Type an exact answer, using radicals as needed.) B( -5\( ) \) does not exist. C. \( g(-5) \) is not a real nurnber. Find \( g(7) \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( g(0) \), we substitute \( x = 0 \) into the function: \[ g(0) = \frac{0}{\sqrt{25 - 0^{2}}} = \frac{0}{\sqrt{25}} = \frac{0}{5} = 0. \] So, the answer is: A. \( g(0)=0 \). For \( g(-5) \), we substitute \( x = -5 \): \[ g(-5) = \frac{-5}{\sqrt{25 - (-5)^{2}}} = \frac{-5}{\sqrt{25 - 25}} = \frac{-5}{\sqrt{0}}. \] Since division by zero is undefined, \( g(-5) \) does not exist. Therefore, the answer is: B. \( g(-5) \) does not exist. Now, for \( g(7) \): \[ g(7) = \frac{7}{\sqrt{25 - 7^{2}}} = \frac{7}{\sqrt{25 - 49}} = \frac{7}{\sqrt{-24}}. \] Since the square root of a negative number is not a real number, the answer is: C. \( g(7) \) is not a real number. Lastly, we'll find \( g\left(\frac{3}{2}\right) \): \[ g\left(\frac{3}{2}\right) = \frac{\frac{3}{2}}{\sqrt{25 - \left(\frac{3}{2}\right)^{2}}} = \frac{\frac{3}{2}}{\sqrt{25 - \frac{9}{4}}} = \frac{\frac{3}{2}}{\sqrt{\frac{100}{4} - \frac{9}{4}}} = \frac{\frac{3}{2}}{\sqrt{\frac{91}{4}}} = \frac{\frac{3}{2}}{\frac{\sqrt{91}}{2}} = \frac{3}{\sqrt{91}}. \] So, \( g\left(\frac{3}{2}\right) = \frac{3}{\sqrt{91}} \).