Pregunta
upstudy study bank question image url

Find \( g(0), g(-5), g(7) \), and \( g\left(\frac{3}{2}\right) \) for \( g(x)=\frac{x}{\sqrt{25-x^{2}}} \). Find \( g(0) \). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( g(0)=\square \) \( \quad( \) Simplify your answer. Type an exact answer, using radicals as needed.) B. \( g(0) \) does not exist. C. \( g(0) \) is not a real number. A. \( g(-5) \). Select the correct choice below and, if necessary, fill in the answor box to complete your choice. B. \( \quad( \) Simplify your answer. Type an exact answer, using radicals as needed.) B( -5\( ) \) does not exist. C. \( g(-5) \) is not a real nurnber. Find \( g(7) \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

Ask by Ball Chang. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( g(0) = 0 \), \( g(-5) \) does not exist, \( g(7) \) is not a real number, and \( g\left(\frac{3}{2}\right) = \dfrac{3\sqrt{91}}{91} \).

Solución

Let's evaluate the function \( g(x) = \frac{x}{\sqrt{25 - x^{2}}} \) at the points \( x = 0 \), \( x = -5 \), \( x = 7 \), and \( x = \frac{3}{2} \). We'll determine whether each value exists and, if it does, simplify the expression. --- ### 1. Find \( g(0) \) **Evaluation:** \[ g(0) = \frac{0}{\sqrt{25 - (0)^2}} = \frac{0}{\sqrt{25}} = \frac{0}{5} = 0 \] **Options:** - **A.** \( g(0) = \boxed{0} \) - B. \( g(0) \) does not exist. - C. \( g(0) \) is not a real number. **Correct Choice:** **A.** \( g(0) = \boxed{0} \) --- ### 2. Find \( g(-5) \) **Evaluation:** \[ g(-5) = \frac{-5}{\sqrt{25 - (-5)^2}} = \frac{-5}{\sqrt{25 - 25}} = \frac{-5}{\sqrt{0}} = \frac{-5}{0} \] Division by zero is undefined. **Options:** - A. \( g(-5) = \square \) \( \quad(\) Simplify your answer. Type an exact answer, using radicals as needed.) - **B.** \( g(-5) \) does not exist. - C. \( g(-5) \) is not a real number. **Correct Choice:** **B.** \( g(-5) \) does not exist. --- ### 3. Find \( g(7) \) **Evaluation:** \[ g(7) = \frac{7}{\sqrt{25 - 7^2}} = \frac{7}{\sqrt{25 - 49}} = \frac{7}{\sqrt{-24}} \] The square root of a negative number is not a real number. **Options:** - A. \( g(7) = \square \) \( \quad(\) Simplify your answer. Type an exact answer, using radicals as needed.) - B. \( g(7) \) does not exist. - **C.** \( g(7) \) is not a real number. **Correct Choice:** **C.** \( g(7) \) is not a real number. --- ### 4. Find \( g\left(\frac{3}{2}\right) \) **Evaluation:** \[ g\left(\frac{3}{2}\right) = \frac{\frac{3}{2}}{\sqrt{25 - \left(\frac{3}{2}\right)^2}} = \frac{\frac{3}{2}}{\sqrt{25 - \frac{9}{4}}} = \frac{\frac{3}{2}}{\sqrt{\frac{100}{4} - \frac{9}{4}}} = \frac{\frac{3}{2}}{\sqrt{\frac{91}{4}}} = \frac{\frac{3}{2}}{\frac{\sqrt{91}}{2}} = \frac{3}{\sqrt{91}} \] To rationalize the denominator: \[ \frac{3}{\sqrt{91}} \times \frac{\sqrt{91}}{\sqrt{91}} = \frac{3\sqrt{91}}{91} \] **Options:** - A. \( g\left(\frac{3}{2}\right) = \boxed{\dfrac{3\sqrt{91}}{91}} \) - B. \( g\left(\frac{3}{2}\right) \) does not exist. - C. \( g\left(\frac{3}{2}\right) \) is not a real number. **Correct Choice:** **A.** \( g\left(\frac{3}{2}\right) = \boxed{\dfrac{3\sqrt{91}}{91}} \) --- ### Summary of Results - \( g(0) = 0 \) - \( g(-5) \) does not exist. - \( g(7) \) is not a real number. - \( g\left(\frac{3}{2}\right) = \dfrac{3\sqrt{91}}{91} \) If you have any further questions or need more assistance with these calculations, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find \( g(0) \), we substitute \( x = 0 \) into the function: \[ g(0) = \frac{0}{\sqrt{25 - 0^{2}}} = \frac{0}{\sqrt{25}} = \frac{0}{5} = 0. \] So, the answer is: A. \( g(0)=0 \). For \( g(-5) \), we substitute \( x = -5 \): \[ g(-5) = \frac{-5}{\sqrt{25 - (-5)^{2}}} = \frac{-5}{\sqrt{25 - 25}} = \frac{-5}{\sqrt{0}}. \] Since division by zero is undefined, \( g(-5) \) does not exist. Therefore, the answer is: B. \( g(-5) \) does not exist. Now, for \( g(7) \): \[ g(7) = \frac{7}{\sqrt{25 - 7^{2}}} = \frac{7}{\sqrt{25 - 49}} = \frac{7}{\sqrt{-24}}. \] Since the square root of a negative number is not a real number, the answer is: C. \( g(7) \) is not a real number. Lastly, we'll find \( g\left(\frac{3}{2}\right) \): \[ g\left(\frac{3}{2}\right) = \frac{\frac{3}{2}}{\sqrt{25 - \left(\frac{3}{2}\right)^{2}}} = \frac{\frac{3}{2}}{\sqrt{25 - \frac{9}{4}}} = \frac{\frac{3}{2}}{\sqrt{\frac{100}{4} - \frac{9}{4}}} = \frac{\frac{3}{2}}{\sqrt{\frac{91}{4}}} = \frac{\frac{3}{2}}{\frac{\sqrt{91}}{2}} = \frac{3}{\sqrt{91}}. \] So, \( g\left(\frac{3}{2}\right) = \frac{3}{\sqrt{91}} \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad