Pregunta
upstudy study bank question image url

ing your knowledge of series: Prove that the sum of the first \( n \), odd natural numbers is \( n^{2} \)

Ask by Bowman Ryan. in South Africa
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum of the first \( n \) odd natural numbers is \( n^{2} \).

Solución

To prove that the sum of the first \( n \) odd natural numbers is \( n^{2} \), we can use **mathematical induction**. Here's a step-by-step proof: ### **Statement to Prove** \[ \sum_{k=1}^{n} (2k - 1) = n^{2} \] In other words: \[ 1 + 3 + 5 + \dots + (2n - 1) = n^{2} \] ### **Base Case** First, verify the statement for \( n = 1 \): \[ \text{Left Side (LS)} = 1 \] \[ \text{Right Side (RS)} = 1^{2} = 1 \] Since LS = RS, the base case holds. ### **Inductive Step** Assume the statement holds for some arbitrary positive integer \( k \); that is: \[ \sum_{i=1}^{k} (2i - 1) = k^{2} \] **Goal:** Show that the statement holds for \( k + 1 \), i.e., \[ \sum_{i=1}^{k+1} (2i - 1) = (k + 1)^{2} \] **Starting from the induction hypothesis:** \[ \sum_{i=1}^{k+1} (2i - 1) = \left( \sum_{i=1}^{k} (2i - 1) \right) + (2(k+1) - 1) \] \[ = k^{2} + (2k + 2 - 1) \quad \text{(by the induction hypothesis)} \] \[ = k^{2} + (2k + 1) \] \[ = k^{2} + 2k + 1 \] \[ = (k + 1)^{2} \] This shows that if the statement holds for \( k \), it also holds for \( k + 1 \). ### **Conclusion** By the principle of mathematical induction, the sum of the first \( n \) odd natural numbers is indeed \( n^{2} \) for all positive integers \( n \). ### **Alternative Proof: Using Arithmetic Series Formula** Alternatively, we can use the formula for the sum of an arithmetic series. The first \( n \) odd natural numbers form an arithmetic sequence with: - First term (\( a_1 \)) = 1 - Common difference (\( d \)) = 2 - Number of terms (\( n \)) = \( n \) The \( n \)-th term (\( a_n \)) is: \[ a_n = a_1 + (n - 1)d = 1 + (n - 1) \times 2 = 2n - 1 \] The sum of an arithmetic series is given by: \[ S_n = \frac{n}{2} (a_1 + a_n) = \frac{n}{2} (1 + (2n - 1)) = \frac{n}{2} \times 2n = n^{2} \] This confirms that the sum of the first \( n \) odd natural numbers is \( n^{2} \). ### **Visual Proof** There's also a beautiful visual proof where arranging dots in squares demonstrates that each new layer adds an odd number of dots, resulting in a complete square of size \( n \times n \). ![Visual Proof of Sum of Odd Numbers](https://upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Square_with_lateral_layers_an_infinitive_ruled_square.svg/200px-Square_with_lateral_layers_an_infinitive_ruled_square.svg.png) In this diagram, each successive layer adds an odd number of dots (1, 3, 5, ...) to form a larger square. ### **Summary** Whether through mathematical induction, the arithmetic series formula, or a visual arrangement, we have proven that: \[ 1 + 3 + 5 + \dots + (2n - 1) = n^{2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To prove that the sum of the first \( n \) odd natural numbers is \( n^2 \), we can start with the sequence of the first \( n \) odd numbers: 1, 3, 5, 7, ..., which can be expressed as \( 2k-1 \) where \( k \) ranges from 1 to \( n \). The sum can be written as \( S_n = 1 + 3 + 5 + \ldots + (2n - 1) \). Using the formula for the sum, we have: \[ S_n = \sum_{k=1}^{n} (2k - 1) = 2\sum_{k=1}^{n} k - \sum_{k=1}^{n} 1 \] The sum of the first \( n \) natural numbers is \( \frac{n(n+1)}{2} \), and the sum of 1's is simply \( n \): \[ S_n = 2 \left( \frac{n(n+1)}{2} \right) - n = n(n+1) - n = n^2 \] Thus, we see that \( S_n = n^2 \) is confirmed! Now, for an intuitive way to visualize this: imagine you are building squares with dots. A 1x1 square has 1 dot, a 2x2 square has 4 dots, and a 3x3 square has 9 dots. The dots added as you increase the square size correspond exactly to the odd numbers: adding 3 (1 + 2 for the second layer) for the 2x2, then 5 more (1 + 4) for the 3x3, showing how adding these odd numbers naturally builds up the squares! Happy dot counting!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad