Use a sum or difference formula to find the exact value of the trigonometric function. \( \tan 105^{\circ} \) \( \tan 105^{\circ}=\square \) (Type an exact answer, using radicals as needed. Simplify your answer.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \( \tan 105^{\circ} \), we can use the angle sum formula for tangent. We can express \( 105^{\circ} \) as \( 60^{\circ} + 45^{\circ} \): \[ \tan(105^{\circ}) = \tan(60^{\circ} + 45^{\circ}) = \frac{\tan(60^{\circ}) + \tan(45^{\circ})}{1 - \tan(60^{\circ})\tan(45^{\circ})} \] Now we know that \( \tan(60^{\circ}) = \sqrt{3} \) and \( \tan(45^{\circ}) = 1 \): \[ = \frac{\sqrt{3} + 1}{1 - \sqrt{3}\cdot1} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \] To simplify this expression, multiply the numerator and the denominator by the conjugate of the denominator \( 1 + \sqrt{3} \): \[ = \frac{(\sqrt{3} + 1)(1 + \sqrt{3})}{(1 - \sqrt{3})(1 + \sqrt{3})} \] \[ = \frac{(\sqrt{3} + 1 + 3 + \sqrt{3})}{1 - 3} = \frac{4 + 2\sqrt{3}}{-2} = -2 - \sqrt{3} \] Thus, the exact value of \( \tan 105^{\circ} \) is: \[ \tan 105^{\circ} = -2 - \sqrt{3} \]