Pregunta
Question Simplify to a single power of 6: \[ \frac{6^{7}}{6^{3}} \] Answer Attempt 2 out of 2 Answer: \( 6 \square \) Submit Answer
Ask by Chang Lindsey. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(6^{4}\)
Solución
To simplify \(\frac{6^{7}}{6^{3}}\) to a single power of 6, you can use the **laws of exponents**, specifically the **quotient rule**, which states:
\[
\frac{a^{m}}{a^{n}} = a^{m-n}
\]
Applying this rule to your expression:
\[
\frac{6^{7}}{6^{3}} = 6^{7-3} = 6^{4}
\]
**Final Answer:** \(6^{4}\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
When you're working with powers that have the same base, you simply subtract the exponents. So, in this case, you take \(7 - 3\) which gives you \(4\). Thus, \(\frac{6^7}{6^3}\) simplifies to \(6^4\). If you're ever confused about how to handle powers, remember that division in exponents means you can just knock off some of the top-level power! It's like giving a high-five and taking back three fingers—you're left with four fingers raised in the air, just like in \(6^4\)!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium