Pregunta
upstudy study bank question image url

Do Now 9/21-9/22... Intro to Proof | Scho... TypingTest.com - C... Westfield High Scho... All Bookmarks Question Show Examples From his eye, which stands 1.55 meters above the ground, Jaxon measures the angle of elevation to the top of a prominent skyscraper to be \( 67^{\circ} \). If he is standing at a horizontal distance of 266 meters from the base of the skyscraper, what is the height of the skyscraper? Round your answer to the nearest tenth of a meter if necessary.

Ask by Matthews Martin. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The height of the skyscraper is approximately 441.1 meters.

Solución

To find the height of the skyscraper, we can use trigonometry. Given that Jaxon measures the angle of elevation to the top of the skyscraper from his eye, which is 1.55 meters above the ground, and the horizontal distance from the base of the skyscraper is 266 meters, we can use the tangent function to find the height of the skyscraper. Let's denote: - \( h \) as the height of the skyscraper above the ground. - \( \theta \) as the angle of elevation measured by Jaxon. From the given information: - The angle of elevation \( \theta = 67^{\circ} \). - The horizontal distance from Jaxon to the base of the skyscraper is 266 meters. - The height of Jaxon's eye above the ground is 1.55 meters. We can use the tangent function to find the height of the skyscraper: \[ \tan(\theta) = \frac{h - 1.55}{266} \] Now, we can solve for \( h \) by rearranging the equation: \[ h = 266 \times \tan(67^{\circ}) + 1.55 \] Let's calculate the height of the skyscraper using the tangent function. The height of the skyscraper is approximately 441.066392 meters. Rounding this to the nearest tenth of a meter, the height of the skyscraper is approximately 441.1 meters.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the height of the skyscraper, we can draw a right triangle where Jaxon’s eye level and the top of the skyscraper form the triangle with the ground. Here you can use the tangent function: \[ \tan(67^{\circ}) = \frac{\text{Height of the skyscraper (h) - Jaxon's height}}{\text{Distance from the skyscraper}} \] Let \( h \) be the height of the skyscraper. The equation then becomes: \[ \tan(67^{\circ}) = \frac{h - 1.55}{266} \] Calculating \( \tan(67^{\circ}) \) gives approximately 2.355. Plugging this into the equation: \[ 2.355 = \frac{h - 1.55}{266} \] Now multiply both sides by 266: \[ h - 1.55 = 2.355 \times 266 \] \[ h - 1.55 \approx 626.63 \] \[ h \approx 626.63 + 1.55 \approx 628.18 \] Therefore, the height of the skyscraper is approximately 628.2 meters when rounded to the nearest tenth.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad