Pregunta
upstudy study bank question image url

37. Write a formula for the sequence below, then find \( a_{34} \). \[ \{-2,5,12,19, \ldots\} \]

Ask by Mccarthy Jimenez. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The formula for the sequence is \( a_n = 7n - 9 \), and \( a_{34} = 229 \).

Solución

To determine a formula for the given sequence and find \( a_{34} \), let's analyze the sequence step by step. **Given Sequence:** \[ -2, 5, 12, 19, \ldots \] ### Step 1: Identify the Type of Sequence First, observe the differences between consecutive terms: \[ \begin{align*} 5 - (-2) &= 7 \\ 12 - 5 &= 7 \\ 19 - 12 &= 7 \\ &\vdots \end{align*} \] The difference between each term is constant (\( 7 \)), indicating that this is an **arithmetic sequence**. ### Step 2: Determine the Formula for the \( n \)-th Term For an arithmetic sequence, the \( n \)-th term (\( a_n \)) can be expressed as: \[ a_n = a_1 + (n - 1) \cdot d \] Where: - \( a_1 \) is the first term of the sequence. - \( d \) is the common difference. **Given:** - \( a_1 = -2 \) - \( d = 7 \) Substituting these values into the formula: \[ \begin{align*} a_n &= -2 + (n - 1) \cdot 7 \\ &= -2 + 7n - 7 \\ &= 7n - 9 \end{align*} \] **Formula for the \( n \)-th term:** \[ a_n = 7n - 9 \] ### Step 3: Find \( a_{34} \) Now, plug \( n = 34 \) into the formula to find the 34th term: \[ \begin{align*} a_{34} &= 7(34) - 9 \\ &= 238 - 9 \\ &= 229 \end{align*} \] **Therefore, \( a_{34} = 229 \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find a formula for the given sequence \(\{-2, 5, 12, 19, \ldots\}\), we start by determining the pattern. The differences between consecutive terms are \(7, 7, 7, \ldots\), which indicates that this is an arithmetic sequence with a common difference of \(7\). The general formula for an arithmetic sequence is given by: \[ a_n = a_1 + (n-1)d \] Where \(a_1\) is the first term and \(d\) is the common difference. Here, \( a_1 = -2 \) and \( d = 7 \). Substituting these values into the formula, we get: \[ a_n = -2 + (n-1) \cdot 7 \] \[ a_n = -2 + 7n - 7 \] \[ a_n = 7n - 9 \] Now, to find \( a_{34} \): \[ a_{34} = 7(34) - 9 \] \[ a_{34} = 238 - 9 \] \[ a_{34} = 229 \] So, the formula for the sequence is \(a_n = 7n - 9\) and \(a_{34} = 229\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad