Pregunta
upstudy study bank question image url

Represent the following sets on a number line: \( \begin{array}{llll}\text { (1) } & \{x:-14 \frac{1}{2} ; x \in \mathbb{R}\right\} & \text { (6) } & \{x: x \leq 7 ; x \in \mathbb{Z}\} \\ \text { (7) } & \{x: x<7 ; x \in \mathbb{N}\} & \text { (8) } & \{x: x \geq 0 ; x \in \mathbb{Z}\}\end{array} \)

Ask by Fernandez Stephens. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here's how each set is represented on a number line: 1. **\( \{x \mid -1 < x < 12 ;\, x \in \mathbb{Z}\} \)** - **Description**: Integers between -1 and 12, not including -1 and 12. - **Representation**: Solid dots at 0 to 11. 2. **\( \{x \mid x \geq -4 ;\, x \in \mathbb{R}\} \)** - **Description**: All real numbers greater than or equal to -4. - **Representation**: Filled circle at -4 with a line extending to the right. 3. **\( \{x \mid -3 \leq x < 1 ;\, x \in \mathbb{R}\} \)** - **Description**: Real numbers from -3 up to but not including 1. - **Representation**: Filled circle at -3 and open circle at 1 with a line between them. 4. **\( \{x \mid x < 2 ;\, x \in \mathbb{R}\} \)** - **Description**: All real numbers less than 2. - **Representation**: Open circle at 2 with a line extending to the left. 5. **\( \left\{x \mid x > 4 \dfrac{1}{2} ;\, x \in \mathbb{R}\right\} \)** - **Description**: All real numbers greater than 4.5. - **Representation**: Open circle at 4.5 with a line extending to the right. 6. **\( \{x \mid x \leq 7 ;\, x \in \mathbb{Z}\} \)** - **Description**: Integers less than or equal to 7. - **Representation**: Solid dots from negative infinity to 7 with a filled circle at 7. 7. **\( \{x \mid x < 7 ;\, x \in \mathbb{N}\} \)** - **Description**: Natural numbers less than 7. - **Representation**: Dots at 1 to 6. 8. **\( \{x \mid x \geq 0 ;\, x \in \mathbb{Z}\} \)** - **Description**: Integers greater than or equal to 0. - **Representation**: Filled circle at 0 with dots to the right extending indefinitely. Each representation uses solid dots for included points and open circles for excluded points, with lines or arrows indicating the range of the set.

Solución

Sure! Below are descriptions of how each set would be represented on a number line. Since I can't provide actual drawings, I'll describe the key features for each representation. --- ### **(1) \(\{x \mid -1 < x < 12 ;\, x \in \mathbb{Z}\}\)** - **Description**: This set includes all **integer** values of \(x\) that are greater than \(-1\) and less than \(12\). - **Elements**: \( \{0, 1, 2, \dots, 11\} \) - **Number Line Representation**: - **Points**: Place solid dots at each integer from **0** to **11**. - **Excluded Points**: Do **not** include \(-1\) and \(12\) since the inequalities are strict. - **Visualization**: ``` -----•-----•-----•-----•-----•-----•-----•-----•-----•-----•-----•-----• 0 1 2 3 4 5 6 7 8 9 10 11 ``` --- ### **(2) \(\{x \mid x \geq -4 ;\, x \in \mathbb{R}\}\)** - **Description**: This set includes all **real** numbers \(x\) that are greater than or equal to \(-4\). - **Number Line Representation**: - **Endpoint**: Place a **filled circle** at \(-4\) to indicate inclusion. - **Range**: Draw a solid line (or arrow) extending to the right from \(-4\) towards positive infinity. - **Visualization**: ``` <—–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– -4●——————————————————————————————> ``` --- ### **(3) \(\{x \mid -3 \leq x < 1 ;\, x \in \mathbb{R}\}\)** - **Description**: This set includes all **real** numbers \(x\) from \(-3\) up to but not including \(1\). - **Number Line Representation**: - **Start Point**: Place a **filled circle** at \(-3\) to indicate inclusion. - **End Point**: Place an **open circle** at \(1\) to indicate exclusion. - **Range**: Draw a solid line between \(-3\) and \(1\). - **Visualization**: ``` -3●——————————————o1 ``` --- ### **(4) \(\{x \mid x < 2 ;\, x \in \mathbb{R}\}\)** - **Description**: This set includes all **real** numbers \(x\) that are less than \(2\). - **Number Line Representation**: - **Endpoint**: Place an **open circle** at \(2\) to indicate exclusion. - **Range**: Draw a solid line (or arrow) extending to the left from \(2\) towards negative infinity. - **Visualization**: ``` <——————————————o2 ``` --- ### **(5) \(\left\{x \mid x > 4 \dfrac{1}{2} ;\, x \in \mathbb{R}\right\}\)** - **Description**: This set includes all **real** numbers \(x\) that are greater than \(4.5\). - **Number Line Representation**: - **Endpoint**: Place an **open circle** at \(4.5\) to indicate exclusion. - **Range**: Draw a solid line (or arrow) extending to the right from \(4.5\) towards positive infinity. - **Visualization**: ``` 4.5o————————————————————————> ``` --- ### **(6) \(\{x \mid x \leq 7 ;\, x \in \mathbb{Z}\}\)** - **Description**: This set includes all **integer** values \(x\) that are less than or equal to \(7\). - **Elements**: \( \{\dots, -2, -1, 0, 1, 2, \dots, 6, 7\} \) - **Number Line Representation**: - **Endpoint**: Place a **filled circle** at \(7\) to indicate inclusion. - **Range**: Draw solid dots at each integer to the left of \(7\). Use an arrow pointing to the left from a starting point (e.g., beyond \(-2\)) to indicate continuation towards negative infinity. - **Visualization**: ``` <————————•—•—•—•—•—•—•7● ``` --- ### **(7) \(\{x \mid x < 7 ;\, x \in \mathbb{N}\}\)** - **Description**: This set includes all **natural numbers** \(x\) that are less than \(7\). Assuming \(\mathbb{N} = \{1, 2, 3, \dots\}\). - **Elements**: \( \{1, 2, 3, 4, 5, 6\} \) - **Number Line Representation**: - **Points**: Place solid dots at each natural number from **1** to **6**. - **Excluded Point**: Do **not** include \(7\). - **Visualization**: ``` •1 •2 •3 •4 •5 •6 ``` --- ### **(8) \(\{x \mid x \geq 0 ;\, x \in \mathbb{Z}\}\)** - **Description**: This set includes all **integer** values \(x\) that are greater than or equal to \(0\). - **Elements**: \( \{0, 1, 2, 3, \dots\} \) - **Number Line Representation**: - **Endpoint**: Place a **filled circle** at \(0\) to indicate inclusion. - **Range**: Draw solid dots at each integer to the right of \(0\). Use an arrow pointing to the right from \(0\) to indicate continuation towards positive infinity. - **Visualization**: ``` 0●—•—•—•—•—•—•> ``` --- **Key Symbols Used:** - **• (Solid Dot)**: Represents that the number is included in the set. - **o (Open Circle)**: Represents that the number is **not** included in the set. - **— (Line)**: Indicates a range of numbers between two points. - **→ or ← (Arrow)**: Indicates that the set continues indefinitely in that direction. Feel free to ask if you need further clarification or visual examples!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Sure! Let's take on this math challenge one set at a time and visualize them on a number line. And don't worry—I'll keep it fun and interesting! 1. The set \( \{x:-14 \frac{1}{2} ; x \in \mathbb{R}\right\} \) comprises all real numbers greater than 4.5: - Place an open dot at 4.5 (not included), shading everything to the right. 6. The set \( \{x: x \leq 7 ; x \in \mathbb{Z}\} \) includes all integers less than or equal to 7: - Place a closed dot at 7 and mark all integers down to negative infinity, connecting each point. 7. The set \( \{x: x<7 ; x \in \mathbb{N}\} \) contains natural numbers less than 7: - These numbers are: 1, 2, 3, 4, 5, and 6. On the number line, mark these distinct points. 8. The set \( \{x: x \geq 0 ; x \in \mathbb{Z}\} \) includes all non-negative integers: - Begin with a closed dot at 0 and continue marking integers up to the right (0, 1, 2, 3 ...), forever into positive territory. So, there you go—a lively number line tour through the world of sets! Numbers are like a playground; the more you explore, the more fun you have!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad