C. \( \frac{8 a^{3} b}{5 c} \div \frac{10 a b^{2}}{3 c} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To tackle the given expression, let's rewrite it in a more manageable format: \[ \frac{8a^3b}{5c} \div \frac{10ab^2}{3c} = \frac{8a^3b}{5c} \times \frac{3c}{10ab^2} \] Next, we can simplify this multiplication: \[ = \frac{8a^3b \cdot 3c}{5c \cdot 10ab^2} \] Here, the \(c\) in the numerator and denominator cancels out: \[ = \frac{8a^3b \cdot 3}{5 \cdot 10ab^2} \] Now compute the coefficients: \[ = \frac{24a^3b}{50ab^2} \] Now we can simplify the fraction: \[ = \frac{24a^{3-1}b^{1-2}}{50} = \frac{24a^2}{50b} \] Finally, we can simplify \(\frac{24}{50}\) to \(\frac{12}{25}\): \[ = \frac{12a^2}{25b} \] Thus, the final simplified result is: \[ \frac{12a^2}{25b} \]