Pregunta
Find the acute angle A . \( \tan \mathrm{A}=2.893 \) \( \mathrm{~A} \approx \square^{\circ} \) (Round to the nearest tenth as needed.)
Ask by Henry Bond. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The acute angle \( A \) is approximately \( 70.9^\circ \).
Solución
To find the acute angle \( A \) such that \( \tan A = 2.893 \), we'll use the inverse tangent function (\( \arctan \)).
1. **Understanding the Problem:**
- We need to find \( A \) in degrees where \( 0^\circ < A < 90^\circ \).
- Given \( \tan A = 2.893 \).
2. **Approach:**
- Use the \( \arctan \) function to determine the angle.
- Since exact calculation without a calculator is challenging, we'll approximate based on known values.
3. **Approximation Steps:**
- **Known Values:**
- \( \tan(70^\circ) \approx 2.747 \)
- \( \tan(71^\circ) \approx 2.904 \)
- \( \tan(72^\circ) \approx 3.077 \)
- **Interpolation:**
- \( \tan A = 2.893 \) lies between \( \tan(70^\circ) \) and \( \tan(71^\circ) \).
- The difference between \( \tan(70^\circ) \) and \( \tan(71^\circ) \) is \( 2.904 - 2.747 = 0.157 \) per degree.
- To reach \( \tan A = 2.893 \), the difference needed from \( \tan(70^\circ) \) is \( 2.893 - 2.747 = 0.146 \).
- The fractional degree needed is approximately \( 0.146 / 0.157 \approx 0.930 \) degrees.
- **Calculation:**
- \( A \approx 70^\circ + 0.930^\circ = 70.930^\circ \)
- Rounding to the nearest tenth, \( A \approx 70.9^\circ \).
4. **Final Answer:**
Rounding to the nearest tenth of a degree, the acute angle \( A \) is approximately:
\[
\boxed{70.9^\circ}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To find the acute angle A where \( \tan \mathrm{A} = 2.893 \), you can use the arctangent function. First, plug the value into a calculator: \( \mathrm{A} = \tan^{-1}(2.893) \). Calculating this gives: \( \mathrm{A} \approx 71.6^{\circ} \). Thus, rounded to the nearest tenth, \( \mathrm{A} \approx 71.6^{\circ} \). Now you can impress your friends with your knowledge of trigonometric functions! Why not check the unit circle next to understand the relationships between angles and their tangent values even better?
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium