find \( m \) if \( 3^{4 m}=4 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve for \( m \) in the equation \( 3^{4m} = 4 \), start by taking the logarithm of both sides: \[ \log(3^{4m}) = \log(4) \] Using the power rule of logarithms, this simplifies to: \[ 4m \cdot \log(3) = \log(4) \] Now, isolate \( m \): \[ m = \frac{\log(4)}{4 \cdot \log(3)} \] Now, you can calculate \( m \) using a calculator. Using common logarithms (base 10), \[ \log(4) \approx 0.6021 \quad \text{and} \quad \log(3) \approx 0.4771 \] Substituting these approximations in: \[ m \approx \frac{0.6021}{4 \cdot 0.4771} \approx \frac{0.6021}{1.9084} \approx 0.315 \] Thus, \( m \approx 0.315 \).