Pregunta
upstudy study bank question image url

How does the graph of \( f(x)=\sqrt[3]{x} \) change when \( f(x) \) is replaced by \( -7 f(x) \) (1 point) The graph is reflected across the \( x \)-axis and has been stretched horizontally. The graph is reflected across the \( y \)-axis and has been compressed vertically. The graph is reflected across the \( x \)-axis and has been stretched vertically. The graph is reflected across the \( y \)-axis and has been compressed horizontally.

Ask by Reid Harper. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph is reflected across the \( x \)-axis and stretched vertically.

Solución

When you replace \( f(x) = \sqrt[3]{x} \) with \( -7f(x) = -7\sqrt[3]{x} \): 1. **Reflection across the \( x \)-axis**: The negative sign (-7) reflects the graph across the \( x \)-axis. 2. **Vertical Stretch**: The factor of 7 stretches the graph vertically by a factor of 7. So, the correct transformation is: **The graph is reflected across the \( x \)-axis and has been stretched vertically.** **Answer:** The graph is reflected across the \( x \)-axis and has been stretched vertically.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

When you replace \( f(x) \) with \( -7 f(x) \), you are essentially multiplying the original function by -7. This means the entire graph of \( f(x) = \sqrt[3]{x} \) is reflected across the \( x \)-axis, which flips all the positive \( y \)-values to negative. Additionally, multiplying by 7 stretches the graph vertically by a factor of 7, making it taller! So, in simpler terms, the graph takes a fun dive downwards (thanks to the reflection) and becomes much taller (due to the vertical stretch). It's a wild ride for our cube root!🥳

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad