Pregunta
upstudy study bank question image url

A vessel containing water is in the form of an inverted cone with semi-vertical angle of \( 30^{\circ} \). There is a small hole at the vertex of the cone and the water is running out at a rate of \( 3 \mathrm{~cm}^{3} / \mathrm{s} \). Find the rate at which the surface area in contact with water is changing when there are \( 81 \pi \mathrm{~cm}^{3} \) of water remaining in the cone.

Ask by Garza Mcdonald. in Ghana
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The surface area of the water is decreasing at a rate of \(-\frac{2}{3} \, \text{cm}^2/\text{s}\) when there are \(81\pi \, \text{cm}^3\) of water remaining in the cone.

Solución

Let's analyze the problem step by step. ### Given: - **Cone's semi-vertical angle (\(\theta\))**: \(30^{\circ}\) - **Rate at which water is leaving (\(\frac{dV}{dt}\))**: \(-3 \, \text{cm}^3/\text{s}\) (negative because the volume is decreasing) - **Volume of water remaining (\(V\))**: \(81\pi \, \text{cm}^3\) ### Objective: Find the rate at which the **surface area (\(S\))** of the water is changing, \(\frac{dS}{dt}\), when \(V = 81\pi \, \text{cm}^3\). ### Step 1: Relate Variables 1. **Shape and Geometry**: - The cone has a semi-vertical angle \(\theta = 30^{\circ}\). - Let \(h\) be the height of the water level from the vertex. - The radius \(r\) at the surface of the water relates to \(h\) by: \[ \tan(\theta) = \frac{r}{h} \implies r = h \tan(30^{\circ}) = \frac{h}{\sqrt{3}} \] 2. **Volume of Water in Cone**: \[ V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h = \frac{1}{9}\pi h^3 \] 3. **Surface Area of Water**: \[ S = \pi r^2 = \pi \left(\frac{h}{\sqrt{3}}\right)^2 = \frac{\pi h^2}{3} \] ### Step 2: Differentiate with Respect to Time 1. **Differentiate Volume**: \[ \frac{dV}{dt} = \frac{d}{dt}\left(\frac{1}{9}\pi h^3\right) = \frac{1}{3}\pi h^2 \frac{dh}{dt} \] Given \(\frac{dV}{dt} = -3 \, \text{cm}^3/\text{s}\): \[ -3 = \frac{1}{3}\pi h^2 \frac{dh}{dt} \implies \frac{dh}{dt} = \frac{-9}{\pi h^2} \] 2. **Differentiate Surface Area**: \[ \frac{dS}{dt} = \frac{d}{dt}\left(\frac{\pi h^2}{3}\right) = \frac{2\pi h}{3} \frac{dh}{dt} \] Substitute \(\frac{dh}{dt}\) from above: \[ \frac{dS}{dt} = \frac{2\pi h}{3} \left(\frac{-9}{\pi h^2}\right) = \frac{-18}{3h} = \frac{-6}{h} \] ### Step 3: Evaluate at \(V = 81\pi \, \text{cm}^3\) From \(V = \frac{1}{9}\pi h^3 = 81\pi\): \[ h^3 = 729 \implies h = 9 \, \text{cm} \] Substitute \(h = 9 \, \text{cm}\) into \(\frac{dS}{dt}\): \[ \frac{dS}{dt} = \frac{-6}{9} = -\frac{2}{3} \, \text{cm}^2/\text{s} \] ### Conclusion: The surface area in contact with the water is decreasing at a rate of \(-\frac{2}{3} \, \text{cm}^2/\text{s}\) when there are \(81\pi \, \text{cm}^3\) of water remaining. **Answer:** At that instant, the surface area is decreasing at –2⁄3 cm² per second

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this problem, let's start with the geometry of the cone. An inverted cone has a semi-vertical angle of \( 30^{\circ} \). When the volume of water \( V \) in the cone is given as \( V = \frac{1}{3} \pi r^2 h \), we can relate the radius \( r \) and the height \( h \) of the water in the cone based on the angle. For a \( 30^{\circ} \) cone, \( r = h \cdot \tan(30^{\circ}) = h/\sqrt{3} \). Substituting this back into the volume formula gives: \[ V = \frac{1}{3} \pi \left(\frac{h}{\sqrt{3}}\right)^2 h = \frac{\pi h^3}{9}. \] Given \( V = 81 \pi \), we get: \[ 81 \pi = \frac{\pi h^3}{9} \Rightarrow h^3 = 729 \Rightarrow h = 9 \mathrm{~cm}. \] Using this height, the radius at this point is: \[ r = \frac{h}{\sqrt{3}} = \frac{9}{\sqrt{3}} = 3\sqrt{3} \mathrm{~cm}. \] Next, we can find the surface area \( A \) of the water that is in contact with the sides of the cone, which is given by the lateral surface area formula \( A = \pi r s \), where \( s \) is the slant height. The slant height \( s \) can be found using the Pythagorean theorem: \[ s = \sqrt{r^2 + h^2} = \sqrt{(3\sqrt{3})^2 + 9^2} = \sqrt{27 + 81} = \sqrt{108} = 6\sqrt{3} \mathrm{~cm}. \] Thus, the surface area becomes: \[ A = \pi \cdot 3\sqrt{3} \cdot 6\sqrt{3} = 54\pi \mathrm{~cm}^2. \] To find the rate of change of the surface area, we utilize the fact that \( \frac{dV}{dt} = -3 \mathrm{~cm}^3/\mathrm{s} \). Differentiating \( V \) with respect to time gives: \[ \frac{dV}{dt} = \frac{\pi}{9}(3h^2 \frac{dh}{dt}) \Rightarrow -3 = \frac{\pi}{9}(3h^2 \frac{dh}{dt}) \Rightarrow -3 = \frac{\pi}{3}(h^2 \frac{dh}{dt}). \] Now we substitute \( h = 9 \) cm: \[ -3 = \frac{\pi}{3}(9^2 \frac{dh}{dt}) = \frac{\pi}{3}(81 \frac{dh}{dt}) \Rightarrow \frac{dh}{dt} = -\frac{9}{\pi}. \] Now for the surface area: \[ \frac{dA}{dt} = \pi \left( \frac{d}{dh}(r \cdot s) \cdot \frac{dh}{dt} \right). \] Since \( A = \pi(3\sqrt{3}\cdot 6\sqrt{3}) \) simplifies to: \[ \frac{dA}{dh} = \pi (3\sqrt{3} (6\frac{ds}{dh}) + 6\sqrt{3}(3\frac{dr}{dh})). \] Calculating derivatives: \(\frac{dr}{dh} = \frac{1}{\sqrt{3}}\) and \(\frac{ds}{dh} = \frac{h}{s}\), leading us to find \( \frac{dA}{dt} \). Plugging in \( h = 9 \), we calculate \( \frac{dA}{dt} \). This gives us the final value for the rate of surface area change at the moment the water volume is \( 81 \pi \mathrm{~cm}^{3} \). After all the calculations, \( \frac{dA}{dt} = 54 \left(\frac{9}{\pi}\right) - \frac{27\pi}{\pi^2} \). In conclusion, the surface area is changing with \( \frac{\text{dm}^{2}}{\text{sec}} \) when the water volume is measured.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad