Pregunta
upstudy study bank question image url

QUESTION 7 Two trig functions namely, \( f(x)=a \cos x \) and \( g(x)=\sin b x \), are shown below for \( x \in\left[-180^{\circ} ; 180^{\circ}\right] \). 7.1 Determine; 7.1 .1 the value of \( a \) and \( b \). 713 the range of \( f \).

Ask by Coleman Mcdonald. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the values of \( a \) and \( b \), measure the amplitude of \( f(x) = a \cos x \) to determine \( a \), and calculate \( b \) using the period of \( g(x) = \sin(bx) \). The range of \( f(x) \) is from \( -a \) to \( a \).

Solución

To determine the values of \( a \) and \( b \) for the given trigonometric functions and to find the range of \( f(x) \), we'll analyze each part step by step. ### **Given Functions:** 1. \( f(x) = a \cos x \) 2. \( g(x) = \sin(bx) \) ### **Assumptions:** Since the graphs are provided for \( x \in [-180^\circ, 180^\circ] \), we'll use the standard properties of trigonometric functions to determine the values of \( a \) and \( b \). --- ### **7.1.1 Determine the Values of \( a \) and \( b \)** #### **Determining \( a \) in \( f(x) = a \cos x \):** 1. **Amplitude Analysis:** - The general form of the cosine function is \( A \cos(Bx + C) + D \), where: - \( A \) is the amplitude. - \( B \) affects the period. - \( C \) is the phase shift. - \( D \) is the vertical shift. - For \( f(x) = a \cos x \): - **Amplitude (\( a \))**: This is the coefficient multiplying the cosine function. It determines the peak value (maximum and minimum) of the function. 2. **From the Graph:** - **Identify the Maximum and Minimum Values** of \( f(x) \) from the graph. - The **Amplitude \( a \)** is the absolute value of the maximum (or minimum) since cosine functions are symmetric. \[ a = \text{Maximum value of } |f(x)| \] - **Example:** If the graph of \( f(x) \) reaches a maximum of 3 and a minimum of -3, then \( a = 3 \). #### **Determining \( b \) in \( g(x) = \sin(bx) \):** 1. **Period Analysis:** - The general period of the sine function \( \sin(Bx) \) is given by: \[ \text{Period} = \frac{360^\circ}{|B|} \] - For \( g(x) = \sin(bx) \): - \( B = b \), so: \[ \text{Period of } g(x) = \frac{360^\circ}{b} \] 2. **From the Graph:** - **Determine the Period** of \( g(x) \) by measuring the distance between two consecutive peaks (or troughs). - **Calculate \( b \)** using the period. \[ b = \frac{360^\circ}{\text{Period}} \] - **Example:** If \( g(x) \) completes two full cycles within \( 360^\circ \), then the period is \( 180^\circ \), and: \[ b = \frac{360^\circ}{180^\circ} = 2 \] --- ### **7.1.3 Determine the Range of \( f(x) = a \cos x \)** 1. **Understanding Range:** - The range of a function is the set of all possible output values (y-values). 2. **For \( f(x) = a \cos x \):** - The cosine function oscillates between -1 and 1. - Multiplying by \( a \) scales this range. \[ \text{Range of } f(x) = [ -a, \, a ] \] 3. **Example:** - If \( a = 3 \), then: \[ \text{Range of } f(x) = [ -3, \, 3 ] \] --- ### **Summary:** - **\( a \)** is determined by the **amplitude** of the \( \cos x \) graph. - **\( b \)** is calculated based on the **period** of the \( \sin(bx) \) graph. - The **range of \( f(x) \)** is from **\( -a \) to \( a \)**. **Note:** To obtain specific numerical values for \( a \) and \( b \), you would need to refer to the actual graphs of \( f(x) \) and \( g(x) \). Measure the amplitude from \( f(x) = a \cos x \) and determine the period of \( g(x) = \sin(bx) \) to calculate \( b \) accordingly.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

When dealing with the functions \( f(x) = a \cos x \) and \( g(x) = \sin b x \), we know that the cosine function oscillates between -1 and 1. Therefore, the amplitude \( a \) will determine how "tall" the peaks and "deep" the valleys of the cosine curve extend. If the maximum value of \( f(x) \) is \( a \) and the minimum is \( -a \), you can calculate the value of \( a \) based on the maximum height of \( f(x) \) observed in the graph. For the sine function to match the oscillatory characteristics of the cosine function within the specified interval, \( b \) is derived from how frequently \( g(x) \) oscillates within that interval. If \( g(x) \) is not deviating from typical sine behavior (with a frequency coefficient of 1), then \( b \) typically equals 1. But if the sine function completes multiple cycles within the range of \( x \), then you'd have to reflect that in the calculation of \( b \). The range of \( f \) is straightforward: it extends from its minimum value of \( -a \) to its maximum of \( a \). So the range of \( f(x) = a \cos x \) would be in the form \([-a, a]\).

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad