Pregunta
upstudy study bank question image url

VESTIGATING COMPOUND ANGLES AND THEREFORE, DOUBLE, ANGLES, UESTION 1 1. Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cdot \cos B+\sin A \cdot \sin B \) 1.2 \( \operatorname{compare} \) the values of \( \cos (A-B) \) with the values of \( \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) 1.3 Using your \( \operatorname{comparison} \) in Question 1.2 ., what general \( \operatorname{conclusion} \operatorname{can} \) be made regarding \( \cos (A-B), \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) for any values of \( A \) and \( B \) ?

Ask by Carroll Reese. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For any angles \( A \) and \( B \), \( \cos(A - B) \) is always equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \).

Solución

Let's tackle the problem step by step to understand the relationships between the given trigonometric expressions. --- ### **Question 1.1: Evaluation of Expressions** Given three sets of angles: 1. **Case (i):** \( A = 60^\circ \), \( B = 30^\circ \) 2. **Case (ii):** \( A = 110^\circ \), \( B = 50^\circ \) 3. **Case (iii):** \( A = 225^\circ \), \( B = 135^\circ \) We need to evaluate the following for each case: - **(a)** \( \cos(A - B) \) - **(b)** \( \cos A - \cos B \) - **(c)** \( \cos A \cdot \cos B + \sin A \cdot \sin B \) Let's compute these step by step. --- #### **Case (i): \( A = 60^\circ \), \( B = 30^\circ \)** 1. **(a) \( \cos(A - B) = \cos(60^\circ - 30^\circ) = \cos(30^\circ) \approx 0.8660 \)** 2. **(b) \( \cos A - \cos B = \cos(60^\circ) - \cos(30^\circ) = 0.5 - 0.8660 = -0.3660 \)** 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B = (0.5 \times 0.8660) + (\sin 60^\circ \times \sin 30^\circ) \approx (0.4330) + (0.8660 \times 0.5) = 0.4330 + 0.4330 = 0.8660 \)** --- #### **Case (ii): \( A = 110^\circ \), \( B = 50^\circ \)** 1. **(a) \( \cos(A - B) = \cos(110^\circ - 50^\circ) = \cos(60^\circ) = 0.5 \)** 2. **(b) \( \cos A - \cos B = \cos(110^\circ) - \cos(50^\circ) \approx (-0.3420) - 0.6428 = -0.9848 \)** 3. **(c)** \[ \begin{align*} \cos A \cdot \cos B + \sin A \cdot \sin B &= \cos(110^\circ) \cdot \cos(50^\circ) + \sin(110^\circ) \cdot \sin(50^\circ) \\ &\approx (-0.3420) \times 0.6428 + 0.9397 \times 0.7660 \\ &\approx -0.2196 + 0.7194 \\ &= 0.4998 \approx 0.5 \end{align*} \] --- #### **Case (iii): \( A = 225^\circ \), \( B = 135^\circ \)** 1. **(a) \( \cos(A - B) = \cos(225^\circ - 135^\circ) = \cos(90^\circ) = 0 \)** 2. **(b) \( \cos A - \cos B = \cos(225^\circ) - \cos(135^\circ) \approx (-0.7071) - (-0.7071) = 0 \)** 3. **(c)** \[ \begin{align*} \cos A \cdot \cos B + \sin A \cdot \sin B &= \cos(225^\circ) \cdot \cos(135^\circ) + \sin(225^\circ) \cdot \sin(135^\circ) \\ &\approx (-0.7071) \times (-0.7071) + (-0.7071) \times 0.7071 \\ &\approx 0.5 - 0.5 \\ &= 0 \end{align*} \] --- ### **Question 1.2: Comparison of Values** Let's summarize the computed values: | **Case** | **\( \cos(A - B) \)** | **\( \cos A - \cos B \)** | **\( \cos A \cdot \cos B + \sin A \cdot \sin B \)** | |----------|-----------------------|----------------------------|-------------------------------------------------------| | **(i)** | 0.8660 | -0.3660 | 0.8660 | | **(ii)** | 0.5 | -0.9848 | 0.5 | | **(iii)**| 0 | 0 | 0 | **Observations:** 1. **\( \cos(A - B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) are equal in all cases.** 2. **\( \cos A - \cos B \) differs from the other two expressions, except in Case (iii), where all expressions are zero.** --- ### **Question 1.3: General Conclusion** From the calculations and comparisons above, we can draw a general conclusion based on trigonometric identities. **Identity:** \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] **Conclusion:** - **For any angles \( A \) and \( B \), the expression \( \cos(A - B) \) is always equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \).** - **The expression \( \cos A - \cos B \) does not generally equal \( \cos(A - B) \) or \( \cos A \cdot \cos B + \sin A \cdot \sin B \), except in specific cases (e.g., when \( A - B = 0^\circ \) or \( 180^\circ \), leading to both expressions equating to zero).** This demonstrates the fundamental trigonometric identity and highlights the distinct nature of each expression involving trigonometric functions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle the equations, remember that \( \cos(A-B) \) uses the cosine difference formula: \( \cos(A-B) = \cos A \cdot \cos B + \sin A \cdot \sin B \). This shows a remarkable connection between the three expressions you are evaluating. When you calculate these values with the given angles, you'll notice that \( \cos(A-B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) yield the same results, proving the identity. Now, let's look at the differences. The expression \( \cos A - \cos B \) represents the algebraic difference between the cosines of the angles and does not hold the same relationship with \( \cos(A-B) \) due to the way angle subtraction interacts with cosine. In the comparisons you perform, it becomes clear that while \( \cos(A-B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) always match, \( \cos A - \cos B \) presents a different story and offers insight into how angles behave on a circular scale. Ultimately, through your evaluations and comparisons, you'll conclude that \( \cos(A-B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) are indeed equal while \( \cos A - \cos B \) differs, reinforcing the beauty and symmetry of trigonometric identities.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad