Responder
The maximum value of \( Z \) is approximately 166.67 when \( X_{1} \) is about 266.67 and \( X_{2} \) is about 33.33.
Solución
To solve the given linear programming problem using the graphical method, we will follow these steps:
1. **Identify the objective function and constraints**:
- Objective function: Maximize \( Z = X_{1} - 3X_{2} \)
- Constraints:
1. \( X_{1} + X_{2} \leq 300 \)
2. \( X_{1} - 2X_{2} \leq 200 \)
3. \( 2X_{1} + X_{2} \leq 100 \)
4. \( X_{2} \leq 200 \)
5. \( X_{1}, X_{2} \geq 0 \)
2. **Graph the constraints**:
- We will convert each inequality into an equation to find the boundary lines.
- For \( X_{1} + X_{2} = 300 \):
- When \( X_{1} = 0 \), \( X_{2} = 300 \)
- When \( X_{2} = 0 \), \( X_{1} = 300 \)
- For \( X_{1} - 2X_{2} = 200 \):
- When \( X_{1} = 0 \), \( X_{2} = -100 \) (not valid since \( X_{2} \geq 0 \))
- When \( X_{2} = 0 \), \( X_{1} = 200 \)
- For \( 2X_{1} + X_{2} = 100 \):
- When \( X_{1} = 0 \), \( X_{2} = 100 \)
- When \( X_{2} = 0 \), \( X_{1} = 50 \)
- For \( X_{2} = 200 \):
- This is a horizontal line at \( X_{2} = 200 \).
3. **Plot the lines on a graph**:
- The feasible region is determined by the area that satisfies all constraints simultaneously.
4. **Identify the feasible region**:
- The feasible region is the area where all the constraints overlap, and it will be bounded by the lines we plotted.
5. **Find the corner points of the feasible region**:
- The corner points can be found by solving the equations of the lines where they intersect.
6. **Evaluate the objective function at each corner point**:
- Calculate \( Z \) at each corner point to find the maximum value.
Now, let's calculate the intersection points of the constraints to find the corner points.
### Step 1: Solve for Intersection Points
1. **Intersection of \( X_{1} + X_{2} = 300 \) and \( X_{1} - 2X_{2} = 200 \)**:
\[
\begin{align*}
X_{1} + X_{2} &= 300 \quad (1) \\
X_{1} - 2X_{2} &= 200 \quad (2)
\end{align*}
\]
2. **Intersection of \( X_{1} + X_{2} = 300 \) and \( 2X_{1} + X_{2} = 100 \)**:
\[
\begin{align*}
X_{1} + X_{2} &= 300 \quad (1) \\
2X_{1} + X_{2} &= 100 \quad (3)
\end{align*}
\]
3. **Intersection of \( X_{1} - 2X_{2} = 200 \) and \( 2X_{1} + X_{2} = 100 \)**:
\[
\begin{align*}
X_{1} - 2X_{2} &= 200 \quad (2) \\
2X_{1} + X_{2} &= 100 \quad (3)
\end{align*}
\]
4. **Intersection of \( X_{2} = 200 \) with other constraints**.
Let's calculate these intersections.
### Step 2: Calculate Intersection Points
I will now calculate the intersection points of the constraints.
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}X_{2}=200\\X_{1}+X_{2}=300\end{array}\right.\)
- step1: Substitute the value of \(X_{2}:\)
\(X_{1}+200=300\)
- step2: Move the constant to the right side:
\(X_{1}=300-200\)
- step3: Subtract the numbers:
\(X_{1}=100\)
- step4: Calculate:
\(\left\{ \begin{array}{l}X_{1}=100\\X_{2}=200\end{array}\right.\)
- step5: Check the solution:
\(\left\{ \begin{array}{l}X_{1}=100\\X_{2}=200\end{array}\right.\)
- step6: Rewrite:
\(\left(X_{1},X_{2}\right) = \left(100,200\right)\)
Solve the system of equations \( X_{2} = 200; X_{1} - 2X_{2} = 200 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}X_{2}=200\\X_{1}-2X_{2}=200\end{array}\right.\)
- step1: Substitute the value of \(X_{2}:\)
\(X_{1}-2\times 200=200\)
- step2: Simplify:
\(X_{1}-400=200\)
- step3: Move the constant to the right side:
\(X_{1}=200+400\)
- step4: Add the numbers:
\(X_{1}=600\)
- step5: Calculate:
\(\left\{ \begin{array}{l}X_{1}=600\\X_{2}=200\end{array}\right.\)
- step6: Check the solution:
\(\left\{ \begin{array}{l}X_{1}=600\\X_{2}=200\end{array}\right.\)
- step7: Rewrite:
\(\left(X_{1},X_{2}\right) = \left(600,200\right)\)
Solve the system of equations \( X_{2} = 200; 2X_{1} + X_{2} = 100 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}X_{2}=200\\2X_{1}+X_{2}=100\end{array}\right.\)
- step1: Substitute the value of \(X_{2}:\)
\(2X_{1}+200=100\)
- step2: Move the constant to the right side:
\(2X_{1}=100-200\)
- step3: Subtract the numbers:
\(2X_{1}=-100\)
- step4: Divide both sides:
\(\frac{2X_{1}}{2}=\frac{-100}{2}\)
- step5: Divide the numbers:
\(X_{1}=-50\)
- step6: Calculate:
\(\left\{ \begin{array}{l}X_{1}=-50\\X_{2}=200\end{array}\right.\)
- step7: Check the solution:
\(\left\{ \begin{array}{l}X_{1}=-50\\X_{2}=200\end{array}\right.\)
- step8: Rewrite:
\(\left(X_{1},X_{2}\right) = \left(-50,200\right)\)
Solve the system of equations \( X_{1} + X_{2} = 300; 2X_{1} + X_{2} = 100 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}X_{1}+X_{2}=300\\2X_{1}+X_{2}=100\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}X_{1}=300-X_{2}\\2X_{1}+X_{2}=100\end{array}\right.\)
- step2: Substitute the value of \(X_{1}:\)
\(2\left(300-X_{2}\right)+X_{2}=100\)
- step3: Simplify:
\(600-X_{2}=100\)
- step4: Move the constant to the right side:
\(-X_{2}=100-600\)
- step5: Subtract the numbers:
\(-X_{2}=-500\)
- step6: Change the signs:
\(X_{2}=500\)
- step7: Substitute the value of \(X_{2}:\)
\(X_{1}=300-500\)
- step8: Simplify:
\(X_{1}=-200\)
- step9: Calculate:
\(\left\{ \begin{array}{l}X_{1}=-200\\X_{2}=500\end{array}\right.\)
- step10: Check the solution:
\(\left\{ \begin{array}{l}X_{1}=-200\\X_{2}=500\end{array}\right.\)
- step11: Rewrite:
\(\left(X_{1},X_{2}\right) = \left(-200,500\right)\)
Solve the system of equations \( X_{1} + X_{2} = 300; X_{1} - 2X_{2} = 200 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}X_{1}+X_{2}=300\\X_{1}-2X_{2}=200\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}X_{1}=300-X_{2}\\X_{1}-2X_{2}=200\end{array}\right.\)
- step2: Substitute the value of \(X_{1}:\)
\(300-X_{2}-2X_{2}=200\)
- step3: Subtract the terms:
\(300-3X_{2}=200\)
- step4: Move the constant to the right side:
\(-3X_{2}=200-300\)
- step5: Subtract the numbers:
\(-3X_{2}=-100\)
- step6: Change the signs:
\(3X_{2}=100\)
- step7: Divide both sides:
\(\frac{3X_{2}}{3}=\frac{100}{3}\)
- step8: Divide the numbers:
\(X_{2}=\frac{100}{3}\)
- step9: Substitute the value of \(X_{2}:\)
\(X_{1}=300-\frac{100}{3}\)
- step10: Simplify:
\(X_{1}=\frac{800}{3}\)
- step11: Calculate:
\(\left\{ \begin{array}{l}X_{1}=\frac{800}{3}\\X_{2}=\frac{100}{3}\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}X_{1}=\frac{800}{3}\\X_{2}=\frac{100}{3}\end{array}\right.\)
- step13: Rewrite:
\(\left(X_{1},X_{2}\right) = \left(\frac{800}{3},\frac{100}{3}\right)\)
Solve the system of equations \( X_{1} - 2X_{2} = 200; 2X_{1} + X_{2} = 100 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}X_{1}-2X_{2}=200\\2X_{1}+X_{2}=100\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}X_{1}=200+2X_{2}\\2X_{1}+X_{2}=100\end{array}\right.\)
- step2: Substitute the value of \(X_{1}:\)
\(2\left(200+2X_{2}\right)+X_{2}=100\)
- step3: Simplify:
\(400+5X_{2}=100\)
- step4: Move the constant to the right side:
\(5X_{2}=100-400\)
- step5: Subtract the numbers:
\(5X_{2}=-300\)
- step6: Divide both sides:
\(\frac{5X_{2}}{5}=\frac{-300}{5}\)
- step7: Divide the numbers:
\(X_{2}=-60\)
- step8: Substitute the value of \(X_{2}:\)
\(X_{1}=200+2\left(-60\right)\)
- step9: Simplify:
\(X_{1}=80\)
- step10: Calculate:
\(\left\{ \begin{array}{l}X_{1}=80\\X_{2}=-60\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}X_{1}=80\\X_{2}=-60\end{array}\right.\)
- step12: Rewrite:
\(\left(X_{1},X_{2}\right) = \left(80,-60\right)\)
### Step 2: Intersection Points
From the calculations, we have the following intersection points:
1. **Intersection of \( X_{1} + X_{2} = 300 \) and \( X_{1} - 2X_{2} = 200 \)**:
- \( (X_{1}, X_{2}) = \left(\frac{800}{3}, \frac{100}{3}\right) \) or approximately \( (266.67, 33.33) \)
2. **Intersection of \( X_{1} + X_{2} = 300 \) and \( 2X_{1} + X_{2} = 100 \)**:
- No valid intersection since \( X_{1} \) would be negative.
3. **Intersection of \( X_{1} - 2X_{2} = 200 \) and \( 2X_{1} + X_{2} = 100 \)**:
- No valid intersection since \( X_{2} \) would be negative.
4. **Intersection of \( X_{2} = 200 \) with \( X_{1} + X_{2} = 300 \)**:
- \( (X_{1}, X_{2}) = (100, 200) \)
5. **Intersection of \( X_{2} = 200 \) with \( X_{1} - 2X_{2} = 200 \)**:
- No valid intersection since \( X_{1} \) would be negative.
6. **Intersection of \( X_{2} = 200 \) with \( 2X_{1} + X_{2} = 100 \)**:
- No valid intersection since \( X_{1} \) would be negative.
### Step 3: Valid Corner Points
The valid corner points of the feasible region are:
1. \( \left(\frac{800}{3}, \frac{100}{3}\right) \) or approximately \( (266.67, 33.33) \)
2. \( (100, 200) \)
### Step 4: Evaluate the Objective Function
Now, we will evaluate the objective function \( Z = X_{1} - 3X_{2} \) at these corner points.
1. For \( \left(\frac{800}{3}, \frac{100}{3}\right) \):
\[
Z = \frac{800}{3} - 3 \cdot \frac{100}{3} = \frac{800}{3} - \frac{300}{3} = \frac{500}{3} \approx 166.67
\]
2. For \( (100, 200) \):
\[
Z = 100 - 3 \cdot 200 = 100 - 600 = -500
\]
### Step 5: Conclusion
The maximum value of \( Z \) occurs at the point \( \left(\frac{800}{3}, \frac{100}{3}\right) \) with a maximum value of approximately \( 166.67 \).
Thus, the solution to the linear programming problem is:
- **Maximum \( Z \approx 166.67 \) at \( (X_{1}, X_{2}) \approx (266.67, 33.33) \)**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución