Pregunta
upstudy study bank question image url

Solve the following system of equations graphically on the set of axes below. \[ \begin{array}{l} y=\frac{1}{2} x-5 \\ x+y=1\end{array} \]

Ask by Page Bowman. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \(x=4\) and \(y=-3\).

Solución

Solve the system of equations \( x+y=1; y=\frac{1}{2}x-5 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}x+y=1\\y=\frac{1}{2}x-5\end{array}\right.\) - step1: Substitute the value of \(y:\) \(x+\frac{1}{2}x-5=1\) - step2: Add the terms: \(\frac{3}{2}x-5=1\) - step3: Move the constant to the right side: \(\frac{3}{2}x=1+5\) - step4: Add the numbers: \(\frac{3}{2}x=6\) - step5: Multiply by the reciprocal: \(\frac{3}{2}x\times \frac{2}{3}=6\times \frac{2}{3}\) - step6: Multiply: \(x=4\) - step7: Substitute the value of \(x:\) \(y=\frac{1}{2}\times 4-5\) - step8: Simplify: \(y=-3\) - step9: Calculate: \(\left\{ \begin{array}{l}x=4\\y=-3\end{array}\right.\) - step10: Check the solution: \(\left\{ \begin{array}{l}x=4\\y=-3\end{array}\right.\) - step11: Rewrite: \(\left(x,y\right) = \left(4,-3\right)\) The solution to the system of equations \(x+y=1\) and \(y=\frac{1}{2}x-5\) is \(x=4\) and \(y=-3\). Therefore, the point of intersection of the two lines is \((4, -3)\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system of equations graphically, you can plot both equations on a coordinate plane: The first equation is \(y = \frac{1}{2} x - 5\). This is a straight line with a slope of \(\frac{1}{2}\) and a y-intercept of \(-5\). To plot this line, start at the y-intercept at \((0, -5)\). From this point, you can move up 1 unit and right 2 units to find another point, which gives you the coordinates \((2, -4)\). You can plot more points if needed, but two should be sufficient for a straight line. The second equation, \(x + y = 1\), can be rewritten as \(y = 1 - x\). This line has a slope of \(-1\) and a y-intercept of \(1\). Begin at the y-intercept \((0, 1)\) and go down 1 unit and right 1 unit to get to the point \((1, 0)\). Again, you can plot more points, like \((2, -1)\). Once you have both lines plotted, look for the point where they intersect. This intersection point will be the solution to the system of equations. When you find the intersection, you'll find the coordinates of the solution \((x,y)\). In this case, the two lines will intersect at the point \((-4, 5)\). Thus, the solution to the system is \(x = -4\) and \(y = 5\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad