Establish the identity. \[ (\csc \theta+\cot \theta)(\csc \theta-\cot \theta)=1 \] Multiply and write the left side expression as the difference of two squares.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To establish the identity, let's first rewrite the left-hand side as the difference of two squares. We can express the left side as: \[ (\csc \theta + \cot \theta)(\csc \theta - \cot \theta) = \csc^2 \theta - \cot^2 \theta \] Now, we can utilize the Pythagorean identity: \[ \csc^2 \theta = 1 + \cot^2 \theta \] Using this identity, we substitute \(\csc^2 \theta\) into our expression: \[ \csc^2 \theta - \cot^2 \theta = (1 + \cot^2 \theta) - \cot^2 \theta = 1 \] Thus, we have shown that: \[ (\csc \theta + \cot \theta)(\csc \theta - \cot \theta) = 1 \] This confirms the identity is true!