Given the matrices: \[ A=\left(\begin{array}{ccc} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{array}\right) ; \quad B=\left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{array}\right) \] Calculate: (1) \( A \times B ; \) (2) \( B \times A \) and show shat \( A B \neq B A \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Let’s start by calculating the matrix multiplication \( A \times B \). First, we compute the product \( A \times B \): \[ A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \] To find \( A \times B \): - The element in the first row and first column: \( 2 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 = 2 + 0 + 1 = 3 \) - The element in the first row and second column: \( 2 \cdot 0 + 0 \cdot 2 + 1 \cdot 1 = 0 + 0 + 1 = 1 \) - The element in the first row and third column: \( 2 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 = 2 + 0 + 0 = 2 \) - The element in the second row and first column: \( 3 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 = 3 + 0 + 0 = 3 \) - The element in the second row and second column: \( 3 \cdot 0 + 0 \cdot 2 + 0 \cdot 1 = 0 + 0 + 0 = 0 \) - The element in the second row and third column: \( 3 \cdot 1 + 0 \cdot 1 + 0 \cdot 0 = 3 + 0 + 0 = 3 \) - The element in the third row and first column: \( 5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 5 + 1 + 1 = 7 \) - The element in the third row and second column: \( 5 \cdot 0 + 1 \cdot 2 + 1 \cdot 1 = 0 + 2 + 1 = 3 \) - The element in the third row and third column: \( 5 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 = 5 + 1 + 0 = 6 \) Combining these results, we find: \[ A \times B = \begin{pmatrix} 3 & 1 & 2 \\ 3 & 0 & 3 \\ 7 & 3 & 6 \end{pmatrix} \] Now, let's compute \( B \times A \): To find \( B \times A \): - The element in the first row and first column: \( 1 \cdot 2 + 0 \cdot 3 + 1 \cdot 5 = 2 + 0 + 5 = 7 \) - The element in the first row and second column: \( 1 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 0 + 0 + 1 = 1 \) - The element in the first row and third column: \( 1 \cdot 1 + 0 \cdot 0 + 1 \cdot 1 = 1 + 0 + 1 = 2 \) - The element in the second row and first column: \( 1 \cdot 2 + 2 \cdot 3 + 1 \cdot 5 = 2 + 6 + 5 = 13 \) - The element in the second row and second column: \( 1 \cdot 0 + 2 \cdot 0 + 1 \cdot 1 = 0 + 0 + 1 = 1 \) - The element in the second row and third column: \( 1 \cdot 1 + 2 \cdot 0 + 1 \cdot 1 = 1 + 0 + 1 = 2 \) - The element in the third row and first column: \( 1 \cdot 2 + 1 \cdot 3 + 0 \cdot 5 = 2 + 3 + 0 = 5 \) - The element in the third row and second column: \( 1 \cdot