Pregunta
upstudy study bank question image url

From his eye, which stands 1.55 meters above the ground, Jaxon measures the angle of elevation to the top of a prominent skyscraper to be \( 67^{\circ} \). If he is standing at a horizontal distance of 266 meters from the base of the skyscraper, what is the height of the skyscraper? Round your answer to the nearest tenth of a meter if necessary.

Ask by Ward Barber. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The skyscraper is approximately 628.2 meters tall.

Solución

To determine the height of the skyscraper, let's break down the problem step by step. 1. **Given Information:** - **Height of Jaxon's eye above the ground:** \(1.55 \) meters - **Horizontal distance from Jaxon to the base of the skyscraper:** \(266 \) meters - **Angle of elevation to the top of the skyscraper:** \(67^{\circ}\) 2. **Understanding the Scenario:** - We can model this situation using a right triangle where: - The horizontal distance (\(266\) meters) is the adjacent side. - The vertical difference between the top of the skyscraper and Jaxon's eye is the opposite side. - The angle of elevation (\(67^{\circ}\)) is between the horizontal distance and the line of sight to the top. 3. **Calculating the Vertical Difference:** - The tangent of the angle of elevation relates the opposite side to the adjacent side: \[ \tan(67^{\circ}) = \frac{\text{Height of Skyscraper} - 1.55}{266} \] - Solving for the height of the skyscraper (\(H\)): \[ H = 266 \times \tan(67^{\circ}) + 1.55 \] 4. **Computing the Value:** - First, calculate \(\tan(67^{\circ})\): \[ \tan(67^{\circ}) \approx 2.35585 \] - Multiply by the horizontal distance: \[ 266 \times 2.35585 \approx 626.656 \text{ meters} \] - Add Jaxon's eye level: \[ H \approx 626.656 + 1.55 = 628.206 \text{ meters} \] - Rounding to the nearest tenth: \[ H \approx 628.2 \text{ meters} \] **Final Answer:** The skyscraper is approximately **628.2 meters** tall.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the height of the skyscraper, we can use trigonometry, specifically the tangent function. The angle of elevation is the angle formed between the horizontal line from Jaxon’s eyes to the top of the skyscraper. The formula is: \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \] Here, \(\theta = 67^{\circ}\), the "opposite" side is the height from Jaxon’s eye level to the top of the skyscraper, and the "adjacent" side is the horizontal distance from Jaxon to the base of the skyscraper (266 m). Let \(h\) be the height of the skyscraper above Jaxon’s eye level: \[ \tan(67^{\circ}) = \frac{h}{266} \] So, \[ h = 266 \cdot \tan(67^{\circ}) \] Calculating that: \[ h \approx 266 \cdot 2.35585 \approx 627.03 \text{ meters} \] Now, to get the total height of the skyscraper, we add Jaxon's height (1.55 m) to \(h\): \[ \text{Total Height} = h + 1.55 \approx 627.03 + 1.55 \approx 628.58 \text{ meters} \] Rounding to the nearest tenth: \[ \text{Total Height} \approx 628.6 \text{ meters} \] So, the height of the skyscraper is approximately **628.6 meters**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad