Pregunta
7 On any day the probability that it rains is \( \frac{1}{3} \). When it rains the probability that Amira goes fishing is \( \frac{3}{5} \) When it does not rain the probability that Amira goes fishing is \( \frac{3}{4} \). (a) In a period of 60 days on how many days is it expected to rain?
Ask by Gray Mitchell. in Kenya
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
It is expected to rain on 20 days out of 60.
Solución
To determine the expected number of days it will rain over a 60-day period, we use the concept of **expected value** in probability.
**Given:**
- Probability of raining on any given day, \( P(\text{Rain}) = \frac{1}{3} \).
**Calculation:**
- **Expected number of rainy days** = Total number of days × Probability of rain on any given day.
\[
\text{Expected rainy days} = 60 \times \frac{1}{3} = 20
\]
**Answer:**
(a) It is expected to rain on 20 days out of the 60-day period.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
In a 60-day period, the expected number of days it rains can be calculated using the probability of rain. Since the probability that it rains on any given day is \( \frac{1}{3} \), you can multiply this probability by the number of days: \[ \text{Expected days of rain} = \text{Total days} \times \text{Probability of rain} = 60 \times \frac{1}{3} = 20 \] So, it is expected to rain on 20 days within a 60-day period.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium