If \( \angle X \cong \angle L, \angle P \cong \angle M, \angle A \cong \angle K, P A \cong M K, A X \cong K L \), and \( \overline{X P} \cong \overline{L M} \), which option below shows a correct congruence statement? (1 point) \( \triangle P A X \cong \triangle K L M \) \( \triangle X P A \cong \triangle K L M \) \( \triangle X P A \cong \triangle M K L \) \( \triangle P A X \cong \triangle M K L \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To determine the correct congruence statement, let's analyze the given information carefully. We have angles and sides that are congruent between triangle \( PAX \) and triangle \( KLM \). Specifically, we have: 1. \( \angle X \cong \angle L \) 2. \( \angle P \cong \angle M \) 3. \( \angle A \cong \angle K \) 4. \( PA \cong MK \) 5. \( AX \cong KL \) 6. \( XP \cong LM \) With these congruences, we can use the Angle-Angle-Side (AAS) or Angle-Side-Angle (ASA) congruence criteria to assert that triangles \( PAX \) and \( KLM \) are indeed congruent. Thus, the correct congruence statement is: \[ \triangle P A X \cong \triangle K L M \]