Pregunta
upstudy study bank question image url

He purchases a total of 150 containers of popcorn to sell. After he sells 15 containers, he will make a total profit, after his upfront costs, of \( \$ 5.50 \). Cassidy's profit, after upfront costs, can be modeled by a linear function in the form \( y=m x+b \).

Ask by Parry Medina. in the United States
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Cassidy's profit after upfront costs can be modeled by the linear function \( y = \frac{11}{30}x \), where \( x \) is the number of containers sold.

Solución

To find Cassidy's profit after upfront costs, we can use the given information to determine the slope and y-intercept of the linear function. Given: - Total containers of popcorn purchased = 150 - Containers sold = 15 - Profit after selling 15 containers = $5.50 Let's denote the profit after upfront costs as \( y \) and the number of containers sold as \( x \). The profit after selling 15 containers can be represented as: \[ y = 5.50 \] We can use the point-slope form of a linear equation to find the slope (\( m \)) and y-intercept (\( b \)) of the linear function. The point-slope form is given by: \[ y - y_1 = m(x - x_1) \] Substitute the given values into the point-slope form: \[ y - 5.50 = m(x - 15) \] Now, we need to find the slope (\( m \)) and y-intercept (\( b \)) of the linear function. Let's calculate the slope (\( m \)) first. Calculate the value by following steps: - step0: Calculate: \(\frac{\left(5.5-0\right)}{\left(15-0\right)}\) - step1: Remove the parentheses: \(\frac{5.5-0}{15-0}\) - step2: Remove 0: \(\frac{5.5}{15-0}\) - step3: Remove 0: \(\frac{5.5}{15}\) - step4: Convert the expressions: \(\frac{\frac{11}{2}}{15}\) - step5: Multiply by the reciprocal: \(\frac{11}{2}\times \frac{1}{15}\) - step6: Multiply the fractions: \(\frac{11}{2\times 15}\) - step7: Multiply: \(\frac{11}{30}\) The slope (\( m \)) of the linear function is \( \frac{11}{30} \) or approximately 0.3667. Now, let's find the y-intercept (\( b \)) of the linear function. Calculate the value by following steps: - step0: Calculate: \(5.5-\frac{11}{30}\times 15\) - step1: Multiply the numbers: \(5.5-\frac{11}{2}\) - step2: Convert the expressions: \(\frac{11}{2}-\frac{11}{2}\) - step3: Transform the expression: \(\frac{11-11}{2}\) - step4: Subtract the numbers: \(\frac{0}{2}\) - step5: Calculate: \(0\) The y-intercept (\( b \)) of the linear function is 0. Therefore, the linear function that models Cassidy's profit after upfront costs is: \[ y = \frac{11}{30}x \] This linear function represents the profit Cassidy will make after selling a certain number of containers of popcorn, taking into account the upfront costs.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Cassidy's profit model can be visualized as a journey! Imagine each container of popcorn as a step up a staircase. Every time he sells a container, he climbs higher. At the start, he has a base profit (b), which represents his costs. As he sells, his profit increases with each sale (m), leading to that joyful moment when he reaches a total profit of $5.50 after selling 15 containers. Now, to turn this into numbers, we can work with his profit function. If he sells 15 containers for a total profit of $5.50, we can start to sketch his linear equation. By finding the slope (m) and y-intercept (b), he can use this model to predict profits beyond 15 containers, making for a deliciously successful popcorn business!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad