Pregunta
upstudy study bank question image url

ORA PROVA TU Un vettore di modulo pari a .
ma un angolo di con una retta orizzontale.
Calcola le componenti orizzontale e verticale del vet.
tore dato.
Quale angolo forma con la retta verticale?

Ask by Hills Black. in Italy
Dec 25,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Il vettore ha una componente orizzontale di circa 3,46 metri e una componente verticale di 2 metri. Forma un angolo di 60 gradi con la retta verticale.

Solución

Certamente! Analizziamo il problema passo dopo passo.
Dati del problema:
  • Modulo del vettore ( ) = 4,0 m
  • Angolo con la retta orizzontale ( ) =
1. Calcolo delle componenti orizzontale e verticale del vettore:
Le componenti di un vettore in un piano cartesiano possono essere calcolate utilizzando le funzioni trigonometriche seno e coseno.
  • Componente orizzontale ( ):
  • Componente verticale ( ):
Risultati:
  • Componente orizzontale ( ) ≈ 3,46 m
  • Componente verticale ( ) = 2,0 m
2. Calcolo dell’angolo con la retta verticale:
L’angolo che il vettore forma con la retta verticale ( ) può essere trovato considerando che la somma degli angoli in un angolo retto è .
Risultato:
  • L’angolo che il vettore forma con la retta verticale è .
Sintesi:
  • Componente orizzontale ( ): ≈ 3,46 m
  • Componente verticale ( ): 2,0 m
  • Angolo con la verticale:
Se hai bisogno di ulteriori chiarimenti, non esitare a chiedere!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Per calcolare le componenti del vettore, utilizziamo le funzioni trigonometriche. La componente orizzontale (x) si calcola come e la componente verticale (y) come . Quindi, facendo i calcoli, otteniamo:
  • Componente orizzontale:
  • Componente verticale:
Per trovare l’angolo che il vettore forma con la retta verticale, sottraiamo l’angolo dato da : . Quindi, il vettore forma un angolo di con la retta verticale.

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad