Part 2 of 3 Compute the dot product of the vectors \( \mathbf{u} \) and \( \mathbf{v} \), and find the angle between the vectors. \( \mathbf{u}=\langle-12,0,5\rangle \) and \( \mathbf{v}=\langle 1,2,3\rangle \). \( \mathbf{u} \cdot \mathbf{v}=3 \). (Type an integer or a simplified fraction.) 1 Find the magnitude of the vectors. \( |\mathbf{u}|=\square \) and \( |\mathbf{v}|=\square \) (Type exact answers, using radicals as needed.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the magnitudes of the vectors \( \mathbf{u} \) and \( \mathbf{v} \): 1. The magnitude of vector \( \mathbf{u} = \langle -12, 0, 5 \rangle \) is calculated using the formula \( |\mathbf{u}| = \sqrt{(-12)^2 + 0^2 + 5^2} \). \[ |\mathbf{u}| = \sqrt{144 + 0 + 25} = \sqrt{169} = 13 \] 2. The magnitude of vector \( \mathbf{v} = \langle 1, 2, 3 \rangle \) is calculated similarly: \[ |\mathbf{v}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] So, the final answers are: \( |\mathbf{u}| = 13 \) and \( |\mathbf{v}| = \sqrt{14} \).