Pregunta
upstudy study bank question image url

Without drawing, how can you show if it is possible to form a triangle with side lengths 5, 7, and 10? Explain why your method works.

Ask by Morgan Schultz. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To check if sides 5, 7, and 10 can form a triangle, use the Triangle Inequality Theorem. Add each pair of sides and ensure the sum is greater than the third side. - 5 + 7 = 12 > 10 ✔️ - 5 + 10 = 15 > 7 ✔️ - 7 + 10 = 17 > 5 ✔️ Since all conditions are met, a triangle can be formed.

Solución

To determine whether the lengths 5, 7, and 10 can form a triangle without drawing it, you can use the **Triangle Inequality Theorem**. This theorem states that for any three lengths to form a valid triangle, the sum of the lengths of **any two sides** must be **greater than** the length of the remaining side. Here's how you can apply this method: 1. **Check the first pair:** - **5 + 7 > 10** - **12 > 10** ✔️ 2. **Check the second pair:** - **5 + 10 > 7** - **15 > 7** ✔️ 3. **Check the third pair:** - **7 + 10 > 5** - **17 > 5** ✔️ Since all three conditions are satisfied, the lengths 5, 7, and 10 **can** form a valid triangle. **Why This Method Works:** The Triangle Inequality Theorem ensures that the sides are long enough to "connect" and close the shape into a triangle. If any one of these conditions fails (for example, if 5 + 7 were not greater than 10), the sides wouldn't meet properly to form a closed three-sided shape. This theorem is fundamental in geometry for validating the possibility of forming a triangle with given side lengths.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine if the lengths 5, 7, and 10 can form a triangle, you can use the Triangle Inequality Theorem. This theorem states that for any triangle, the sum of the lengths of any two sides must always be greater than the length of the remaining side. So, you check all combinations: 1. 5 + 7 > 10 → 12 > 10 (True) 2. 5 + 10 > 7 → 15 > 7 (True) 3. 7 + 10 > 5 → 17 > 5 (True) Since all three conditions are satisfied, it is indeed possible to form a triangle with these side lengths! This method works because it directly addresses the essential geometric property required for a triangle's existence.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad