Pregunta
Factor out the greatest common factor. If the greatest common factor is 1 , just retype the polynomial. \( 8 c^{3}+6 c^{2} \)
Ask by Coles Stephens. in the United States
Feb 02,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(2c^{2}(4c + 3)\)
Solución
The greatest common factor (GCF) of \(8c^{3}\) and \(6c^{2}\) is \(2c^{2}\).
Factoring out \(2c^{2}\) from each term:
\[
8c^{3} + 6c^{2} = 2c^{2}(4c + 3)
\]
**Answer:**
\[
2c^{2}(4c + 3)
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
The greatest common factor (GCF) of the terms \(8c^3\) and \(6c^2\) is \(2c^2\). When we factor out this GCF, we get: \(2c^2(4c + 3)\). So, the expression \(8c^{3}+6c^{2}\) simplifies beautifully to \(2c^2(4c + 3)\). Just remember, factoring out the GCF not only helps simplify expressions but also gets you closer to solving equations and working on further algebraic manipulations! Plus, identifying the GCF can be a bit like a scavenger hunt, where you uncover the "hidden gems" in your polynomial!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium