Pregunta
upstudy study bank question image url

(6) \( \frac{1}{x+1}-\frac{3 x-1}{1-x}=2 \) (8) \( \frac{-x^{2}+3 x+12}{x^{2}-3 x-4}+2=\frac{-1}{4-x} \) (10) \( \frac{2 x^{2}-4 x}{x^{3}-3 x+2}=\frac{1}{x-2}-\frac{2}{1-x}+1 \) (12) \( \frac{2-x}{x+1}-\frac{2 x-4}{5-x}=-\frac{5 x-13}{x^{2}-4 x-5} \) (14) \( \frac{-3 x+9}{x^{2}+x-2}=\frac{4}{x^{2}+6 x+8}+\frac{4}{1-x} \)

Ask by Vaughn Klein. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the solutions for each equation: 1. **Problem (6):** - \( x = -3 \) - \( x = 0 \) 2. **Problem (8):** - \( x = 1 \) - \( x = 3 \) 3. **Problem (10):** - \( x \approx 0.652946 \) - \( x \approx 1.753639 \) 4. **Problem (12):** - \( x = -5 - 2\sqrt{13} \) - \( x = -5 + 2\sqrt{13} \) 5. **Problem (14):** - \( x = -9 \) - \( x = -8 \) If you need more details on any of these solutions, let me know!

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{1}{x+1}-\frac{3x-1}{1-x}=2\) - step1: Find the domain: \(\frac{1}{x+1}-\frac{3x-1}{1-x}=2,x \in \left(-\infty,-1\right)\cup \left(-1,1\right)\cup \left(1,+\infty\right)\) - step2: Multiply both sides of the equation by LCD: \(\left(\frac{1}{x+1}-\frac{3x-1}{1-x}\right)\left(x+1\right)\left(1-x\right)=2\left(x+1\right)\left(1-x\right)\) - step3: Simplify the equation: \(2-3x-3x^{2}=-2x^{2}+2\) - step4: Cancel equal terms: \(-3x-3x^{2}=-2x^{2}\) - step5: Move the expression to the left side: \(-3x-3x^{2}-\left(-2x^{2}\right)=0\) - step6: Subtract the terms: \(-3x-x^{2}=0\) - step7: Factor the expression: \(-x\left(3+x\right)=0\) - step8: Separate into possible cases: \(\begin{align}&-x=0\\&3+x=0\end{align}\) - step9: Solve the equation: \(\begin{align}&x=0\\&x=-3\end{align}\) - step10: Check if the solution is in the defined range: \(\begin{align}&x=0\\&x=-3\end{align},x \in \left(-\infty,-1\right)\cup \left(-1,1\right)\cup \left(1,+\infty\right)\) - step11: Find the intersection: \(\begin{align}&x=0\\&x=-3\end{align}\) - step12: Rewrite: \(x_{1}=-3,x_{2}=0\) Solve the equation \( \frac{-x^{2}+3 x+12}{x^{2}-3 x-4}+2=\frac{-1}{4-x} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{-x^{2}+3x+12}{x^{2}-3x-4}+2=\frac{-1}{4-x}\) - step1: Find the domain: \(\frac{-x^{2}+3x+12}{x^{2}-3x-4}+2=\frac{-1}{4-x},x \in \left(-\infty,-1\right)\cup \left(-1,4\right)\cup \left(4,+\infty\right)\) - step2: Rewrite the fraction: \(\frac{-x^{2}+3x+12}{x^{2}-3x-4}+2=-\frac{1}{4-x}\) - step3: Multiply both sides of the equation by LCD: \(\left(\frac{-x^{2}+3x+12}{x^{2}-3x-4}+2\right)\left(-x+4\right)\left(x+1\right)=-\frac{1}{4-x}\times \left(-x+4\right)\left(x+1\right)\) - step4: Simplify the equation: \(-x^{2}+3x-4=-x-1\) - step5: Move the expression to the left side: \(-x^{2}+3x-4-\left(-x-1\right)=0\) - step6: Calculate: \(-x^{2}+4x-3=0\) - step7: Factor the expression: \(\left(-x+3\right)\left(x-1\right)=0\) - step8: Separate into possible cases: \(\begin{align}&-x+3=0\\&x-1=0\end{align}\) - step9: Solve the equation: \(\begin{align}&x=3\\&x=1\end{align}\) - step10: Check if the solution is in the defined range: \(\begin{align}&x=3\\&x=1\end{align},x \in \left(-\infty,-1\right)\cup \left(-1,4\right)\cup \left(4,+\infty\right)\) - step11: Find the intersection: \(\begin{align}&x=3\\&x=1\end{align}\) - step12: Rewrite: \(x_{1}=1,x_{2}=3\) Solve the equation \( \frac{-3 x+9}{x^{2}+x-2}=\frac{4}{x^{2}+6 x+8}+\frac{4}{1-x} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{-3x+9}{x^{2}+x-2}=\frac{4}{x^{2}+6x+8}+\frac{4}{1-x}\) - step1: Find the domain: \(\frac{-3x+9}{x^{2}+x-2}=\frac{4}{x^{2}+6x+8}+\frac{4}{1-x},x \in \left(-\infty,-4\right)\cup \left(-4,-2\right)\cup \left(-2,1\right)\cup \left(1,+\infty\right)\) - step2: Multiply both sides of the equation by LCD: \(\frac{-3x+9}{x^{2}+x-2}\times \left(-x^{2}-x+2\right)\left(x+4\right)=\left(\frac{4}{x^{2}+6x+8}+\frac{4}{1-x}\right)\left(-x^{2}-x+2\right)\left(x+4\right)\) - step3: Simplify the equation: \(-3x\left(-x-4\right)+9\left(-x-4\right)=36+20x+4x^{2}\) - step4: Calculate: \(3x^{2}+12x-9x-36=36+20x+4x^{2}\) - step5: Simplify: \(3x^{2}+3x-36=36+20x+4x^{2}\) - step6: Move the expression to the left side: \(3x^{2}+3x-36-\left(36+20x+4x^{2}\right)=0\) - step7: Calculate: \(-x^{2}-17x-72=0\) - step8: Factor the expression: \(-\left(x+8\right)\left(x+9\right)=0\) - step9: Divide the terms: \(\left(x+8\right)\left(x+9\right)=0\) - step10: Separate into possible cases: \(\begin{align}&x+8=0\\&x+9=0\end{align}\) - step11: Solve the equation: \(\begin{align}&x=-8\\&x=-9\end{align}\) - step12: Check if the solution is in the defined range: \(\begin{align}&x=-8\\&x=-9\end{align},x \in \left(-\infty,-4\right)\cup \left(-4,-2\right)\cup \left(-2,1\right)\cup \left(1,+\infty\right)\) - step13: Find the intersection: \(\begin{align}&x=-8\\&x=-9\end{align}\) - step14: Rewrite: \(x_{1}=-9,x_{2}=-8\) Solve the equation \( \frac{2-x}{x+1}-\frac{2 x-4}{5-x}=-\frac{5 x-13}{x^{2}-4 x-5} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{2-x}{x+1}-\frac{2x-4}{5-x}=-\frac{5x-13}{x^{2}-4x-5}\) - step1: Find the domain: \(\frac{2-x}{x+1}-\frac{2x-4}{5-x}=-\frac{5x-13}{x^{2}-4x-5},x \in \left(-\infty,-1\right)\cup \left(-1,5\right)\cup \left(5,+\infty\right)\) - step2: Multiply both sides of the equation by LCD: \(\left(\frac{2-x}{x+1}-\frac{2x-4}{5-x}\right)\left(-x+5\right)\left(x+1\right)=-\frac{5x-13}{x^{2}-4x-5}\times \left(-x+5\right)\left(x+1\right)\) - step3: Simplify the equation: \(14-5x-x^{2}=5x-13\) - step4: Move the expression to the left side: \(14-5x-x^{2}-\left(5x-13\right)=0\) - step5: Subtract the terms: \(27-10x-x^{2}=0\) - step6: Rewrite in standard form: \(-x^{2}-10x+27=0\) - step7: Multiply both sides: \(x^{2}+10x-27=0\) - step8: Solve using the quadratic formula: \(x=\frac{-10\pm \sqrt{10^{2}-4\left(-27\right)}}{2}\) - step9: Simplify the expression: \(x=\frac{-10\pm \sqrt{208}}{2}\) - step10: Simplify the expression: \(x=\frac{-10\pm 4\sqrt{13}}{2}\) - step11: Separate into possible cases: \(\begin{align}&x=\frac{-10+4\sqrt{13}}{2}\\&x=\frac{-10-4\sqrt{13}}{2}\end{align}\) - step12: Simplify the expression: \(\begin{align}&x=-5+2\sqrt{13}\\&x=\frac{-10-4\sqrt{13}}{2}\end{align}\) - step13: Simplify the expression: \(\begin{align}&x=-5+2\sqrt{13}\\&x=-5-2\sqrt{13}\end{align}\) - step14: Check if the solution is in the defined range: \(\begin{align}&x=-5+2\sqrt{13}\\&x=-5-2\sqrt{13}\end{align},x \in \left(-\infty,-1\right)\cup \left(-1,5\right)\cup \left(5,+\infty\right)\) - step15: Find the intersection: \(\begin{align}&x=-5+2\sqrt{13}\\&x=-5-2\sqrt{13}\end{align}\) - step16: Rewrite: \(x_{1}=-5-2\sqrt{13},x_{2}=-5+2\sqrt{13}\) Solve the equation \( \frac{2 x^{2}-4 x}{x^{3}-3 x+2}=\frac{1}{x-2}-\frac{2}{1-x}+1 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{2x^{2}-4x}{x^{3}-3x+2}=\frac{1}{x-2}-\frac{2}{1-x}+1\) - step1: Find the domain: \(\frac{2x^{2}-4x}{x^{3}-3x+2}=\frac{1}{x-2}-\frac{2}{1-x}+1,x \in \left(-\infty,-2\right)\cup \left(-2,1\right)\cup \left(1,2\right)\cup \left(2,+\infty\right)\) - step2: Multiply both sides of the equation by LCD: \(\frac{2x^{2}-4x}{x^{3}-3x+2}\times \left(x-1\right)\left(x^{2}+x-2\right)\left(-x+2\right)=\left(\frac{1}{x-2}-\frac{2}{1-x}+1\right)\left(x-1\right)\left(x^{2}+x-2\right)\left(-x+2\right)\) - step3: Simplify the equation: \(2x^{2}\left(-x+2\right)-4x\left(-x+2\right)=3x-6-x^{3}+5x^{2}-x^{4}\) - step4: Calculate: \(-2x^{3}+4x^{2}+4x^{2}-8x=3x-6-x^{3}+5x^{2}-x^{4}\) - step5: Simplify: \(-2x^{3}+8x^{2}-8x=3x-6-x^{3}+5x^{2}-x^{4}\) - step6: Move the expression to the left side: \(-2x^{3}+8x^{2}-8x-\left(3x-6-x^{3}+5x^{2}-x^{4}\right)=0\) - step7: Calculate: \(-x^{3}+3x^{2}-11x+6+x^{4}=0\) - step8: Calculate: \(\begin{align}&x\approx 1.753639\\&x\approx 0.652946\end{align}\) - step9: Check if the solution is in the defined range: \(\begin{align}&x\approx 1.753639\\&x\approx 0.652946\end{align},x \in \left(-\infty,-2\right)\cup \left(-2,1\right)\cup \left(1,2\right)\cup \left(2,+\infty\right)\) - step10: Find the intersection: \(\begin{align}&x\approx 1.753639\\&x\approx 0.652946\end{align}\) - step11: Rewrite: \(x_{1}\approx 0.652946,x_{2}\approx 1.753639\) Here are the solutions for each of the equations provided: ### Problem (6) \[ \frac{1}{x+1}-\frac{3 x-1}{1-x}=2 \] **Solutions:** - \( x_{1} = -3 \) - \( x_{2} = 0 \) ### Problem (8) \[ \frac{-x^{2}+3 x+12}{x^{2}-3 x-4}+2=\frac{-1}{4-x} \] **Solutions:** - \( x_{1} = 1 \) - \( x_{2} = 3 \) ### Problem (10) \[ \frac{2 x^{2}-4 x}{x^{3}-3 x+2}=\frac{1}{x-2}-\frac{2}{1-x}+1 \] **Solutions:** - \( x_{1} \approx 0.652946 \) - \( x_{2} \approx 1.753639 \) ### Problem (12) \[ \frac{2-x}{x+1}-\frac{2 x-4}{5-x}=-\frac{5 x-13}{x^{2}-4 x-5} \] **Solutions:** - \( x_{1} = -5 - 2\sqrt{13} \) - \( x_{2} = -5 + 2\sqrt{13} \) ### Problem (14) \[ \frac{-3 x+9}{x^{2}+x-2}=\frac{4}{x^{2}+6 x+8}+\frac{4}{1-x} \] **Solutions:** - \( x_{1} = -9 \) - \( x_{2} = -8 \) If you need further assistance or explanations for any of these problems, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

When you tackle equations like these, it’s beneficial to first find a common denominator. This will simplify the fractions and make it easier to combine and rearrange terms. Remember, isolating \(x\) can be crucial, so keep an eye on the algebraic manipulation! Often students forget to check for extraneous solutions after solving these equations. This can happen when you multiply both sides by denominators that contain \(x\). Always plug your solutions back into the original equation to ensure they work; otherwise, you might end up with a solution that doesn't hold true in the original context!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad