Pregunta
upstudy study bank question image url

46. If \( \sin x=\frac{1}{4}, x \) in quadrant II, then find \( \sin \frac{x}{2}, \cos \frac{x}{2}, \tan \frac{x}{2} \)

Ask by Norton May. in India
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \sin \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}}, \quad \cos \frac{x}{2} = \frac{\sqrt{4 - \sqrt{15}}}{2\sqrt{2}}, \quad \tan \frac{x}{2} = 4 + \sqrt{15} \]

Solución

Given that \( \sin x = \frac{1}{4} \) and \( x \) is in the second quadrant, we can find \( \sin \frac{x}{2} \), \( \cos \frac{x}{2} \), and \( \tan \frac{x}{2} \) using half-angle identities. ### Step 1: Determine \( \cos x \) Since \( x \) is in the second quadrant, \( \cos x \) is negative. Using the Pythagorean identity: \[ \cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{1}{4}\right)^2 = 1 - \frac{1}{16} = \frac{15}{16} \] \[ \cos x = -\sqrt{\frac{15}{16}} = -\frac{\sqrt{15}}{4} \] ### Step 2: Find \( \sin \frac{x}{2} \) Using the half-angle formula: \[ \sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}} = \sqrt{\frac{1 - \left(-\frac{\sqrt{15}}{4}\right)}{2}} = \sqrt{\frac{1 + \frac{\sqrt{15}}{4}}{2}} = \frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}} \] ### Step 3: Find \( \cos \frac{x}{2} \) Using the half-angle formula: \[ \cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}} = \sqrt{\frac{1 + \left(-\frac{\sqrt{15}}{4}\right)}{2}} = \sqrt{\frac{1 - \frac{\sqrt{15}}{4}}{2}} = \frac{\sqrt{4 - \sqrt{15}}}{2\sqrt{2}} \] ### Step 4: Find \( \tan \frac{x}{2} \) Using the tangent half-angle formula: \[ \tan \frac{x}{2} = \frac{\sin x}{1 + \cos x} = \frac{\frac{1}{4}}{1 - \frac{\sqrt{15}}{4}} = \frac{1}{4 - \sqrt{15}} \] Rationalizing the denominator: \[ \tan \frac{x}{2} = \frac{1}{4 - \sqrt{15}} \times \frac{4 + \sqrt{15}}{4 + \sqrt{15}} = \frac{4 + \sqrt{15}}{16 - 15} = 4 + \sqrt{15} \] ### Final Answers \[ \sin \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{2\,\sqrt{2}} \] \[ \cos \frac{x}{2} = \frac{\sqrt{4 - \sqrt{15}}}{2\,\sqrt{2}} \] \[ \tan \frac{x}{2} = 4 + \sqrt{15} \] **Answer Summary:** After simplifying, the half-angles are equal to √(4 + √15) divided by twice √2, √(4 – √15) divided by twice √2, and 4 + √15. Thus, sin(x⁄2) = √(4 + √15)/(2√2), cos(x⁄2) = √(4 − √15)/(2√2), and tan(x⁄2) = 4 + √15.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find \(\sin \frac{x}{2}\), \(\cos \frac{x}{2}\), and \(\tan \frac{x}{2}\) given that \(\sin x = \frac{1}{4}\) and \(x\) is in quadrant II, we will use the half-angle formulas: 1. **Finding \(\sin \frac{x}{2}\)**: The half-angle formula for sine is given by: \[ \sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}} \] To use this formula, we first need to find \(\cos x\). We know: \[ \sin^2 x + \cos^2 x = 1 \implies \cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{1}{4}\right)^2 = 1 - \frac{1}{16} = \frac{15}{16} \] Therefore, \(\cos x = -\sqrt{\frac{15}{16}} = -\frac{\sqrt{15}}{4}\) (since \(x\) is in quadrant II, where cosine is negative). Now we can find \(\sin \frac{x}{2}\): \[ \sin \frac{x}{2} = \sqrt{\frac{1 - (-\frac{\sqrt{15}}{4})}{2}} = \sqrt{\frac{1 + \frac{\sqrt{15}}{4}}{2}} = \sqrt{\frac{4 + \sqrt{15}}{8}} = \frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}} = \frac{\sqrt{4 + \sqrt{15}}}{4} \] 2. **Finding \(\cos \frac{x}{2}\)**: The half-angle formula for cosine is given by: \[ \cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}} \] Using our previously calculated \(\cos x\): \[ \cos \frac{x}{2} = \sqrt{\frac{1 - \frac{\sqrt{15}}{4}}{2}} = \sqrt{\frac{4 - \sqrt{15}}{8}} = \frac{\sqrt{4 - \sqrt{15}}}{2\sqrt{2}} = \frac{\sqrt{4 - \sqrt{15}}}{4} \] 3. **Finding \(\tan \frac{x}{2}\)**: The half-angle formula for tangent is given by: \[ \tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \] Thus, we can substitute our values to find: \[ \tan \frac{x}{2} = \frac{\frac{\sqrt{4 + \sqrt{15}}}{4}}{\frac{\sqrt{4 - \sqrt{15}}}{4}} = \frac{\sqrt{4 + \sqrt{15}}}{\sqrt{4 - \sqrt{15}}} \] **Final Results**: - \(\sin \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{4}\) - \(\cos \frac{x}{2} = \frac{\sqrt{4 - \sqrt{15}}}{4}\) - \(\tan \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{\sqrt{4 - \sqrt{15}}}\)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad