46. If \( \sin x=\frac{1}{4}, x \) in quadrant II, then find \( \sin \frac{x}{2}, \cos \frac{x}{2}, \tan \frac{x}{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \(\sin \frac{x}{2}\), \(\cos \frac{x}{2}\), and \(\tan \frac{x}{2}\) given that \(\sin x = \frac{1}{4}\) and \(x\) is in quadrant II, we will use the half-angle formulas: 1. **Finding \(\sin \frac{x}{2}\)**: The half-angle formula for sine is given by: \[ \sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}} \] To use this formula, we first need to find \(\cos x\). We know: \[ \sin^2 x + \cos^2 x = 1 \implies \cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{1}{4}\right)^2 = 1 - \frac{1}{16} = \frac{15}{16} \] Therefore, \(\cos x = -\sqrt{\frac{15}{16}} = -\frac{\sqrt{15}}{4}\) (since \(x\) is in quadrant II, where cosine is negative). Now we can find \(\sin \frac{x}{2}\): \[ \sin \frac{x}{2} = \sqrt{\frac{1 - (-\frac{\sqrt{15}}{4})}{2}} = \sqrt{\frac{1 + \frac{\sqrt{15}}{4}}{2}} = \sqrt{\frac{4 + \sqrt{15}}{8}} = \frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}} = \frac{\sqrt{4 + \sqrt{15}}}{4} \] 2. **Finding \(\cos \frac{x}{2}\)**: The half-angle formula for cosine is given by: \[ \cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}} \] Using our previously calculated \(\cos x\): \[ \cos \frac{x}{2} = \sqrt{\frac{1 - \frac{\sqrt{15}}{4}}{2}} = \sqrt{\frac{4 - \sqrt{15}}{8}} = \frac{\sqrt{4 - \sqrt{15}}}{2\sqrt{2}} = \frac{\sqrt{4 - \sqrt{15}}}{4} \] 3. **Finding \(\tan \frac{x}{2}\)**: The half-angle formula for tangent is given by: \[ \tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \] Thus, we can substitute our values to find: \[ \tan \frac{x}{2} = \frac{\frac{\sqrt{4 + \sqrt{15}}}{4}}{\frac{\sqrt{4 - \sqrt{15}}}{4}} = \frac{\sqrt{4 + \sqrt{15}}}{\sqrt{4 - \sqrt{15}}} \] **Final Results**: - \(\sin \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{4}\) - \(\cos \frac{x}{2} = \frac{\sqrt{4 - \sqrt{15}}}{4}\) - \(\tan \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{\sqrt{4 - \sqrt{15}}}\)