Pregunta
upstudy study bank question image url

2. Which term of the sequence \( \frac{3}{4}: \frac{1}{4} ; \frac{1}{12} ; \) has a value of \( \frac{1}{324} \)

Ask by Black Fitzgerald. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sixth term of the sequence is \( \frac{1}{324} \).

Solución

To determine which term of the sequence \( \frac{3}{4}, \frac{1}{4}, \frac{1}{12}, \ldots \) equals \( \frac{1}{324} \), let's analyze the pattern of the sequence. 1. **Identify the Pattern:** - **Term 1:** \( \frac{3}{4} \) - **Term 2:** \( \frac{1}{4} \) (obtained by dividing Term 1 by 3: \( \frac{3}{4} \div 3 = \frac{1}{4} \)) - **Term 3:** \( \frac{1}{12} \) (obtained by dividing Term 2 by 3: \( \frac{1}{4} \div 3 = \frac{1}{12} \)) - Following this pattern, each subsequent term is obtained by dividing the previous term by 3. 2. **General Formula:** The sequence is geometric with a common ratio of \( \frac{1}{3} \). The general term \( T_n \) can be expressed as: \[ T_n = \frac{3}{4} \times \left(\frac{1}{3}\right)^{n-1} \] 3. **Find the Term Equal to \( \frac{1}{324} \):** Set \( T_n = \frac{1}{324} \): \[ \frac{3}{4} \times \left(\frac{1}{3}\right)^{n-1} = \frac{1}{324} \] Divide both sides by \( \frac{3}{4} \): \[ \left(\frac{1}{3}\right)^{n-1} = \frac{4}{972} = \frac{1}{243} \] Since \( 243 = 3^5 \), we have: \[ \left(\frac{1}{3}\right)^{n-1} = \left(\frac{1}{3}\right)^5 \] Therefore: \[ n - 1 = 5 \implies n = 6 \] **Answer:** The sixth term of the sequence has a value of \( \frac{1}{324} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The sequence you provided follows a pattern where each term involves dividing the previous term by an increasing divisor. To find the term that equals \( \frac{1}{324} \), let’s look at the denominators carefully. The first term is \( \frac{3}{4} \), the second term is \( \frac{1}{4} \) (which is \( \frac{3}{4} \div 3 = \frac{1}{4} \)), and the third term \( \frac{1}{12} \) can be found by taking \( \frac{1}{4} \div 3 = \frac{1}{12} \). Continuing this pattern, we divide by 3 again to get the fourth term: \(\frac{1}{12} \div 3 = \frac{1}{36}\). Next, we divide \( \frac{1}{36} \) by 3 to find the fifth term: \(\frac{1}{36} \div 3 = \frac{1}{108}\). Finally, we divide \( \frac{1}{108} \) by 3 to find the sixth term: \(\frac{1}{108} \div 3 = \frac{1}{324}\). Thus, the value \( \frac{1}{324} \) is the sixth term of the sequence.

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad